![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics > General
This thesis explores the connection between gravity and thermodynamics and provides a unification scheme that opens up new directions of exploration. Further elaborating on the Hawking effect and the possibility of singularity avoidance, the author not only discusses the information loss paradox at a broader level but also provides a possible solution to it. As the final frontier, it describes some novel effects arising from the microscopic structure of spacetime. Taken as a whole, the thesis addresses three major research areas in gravitational physics: it starts with classical gravity, proceeds to the black hole information loss paradox, and closes with Planck scale physics. The thesis is written in a lucid and pedagogical style, with an introduction accessible to researchers from other branches of physics and a d iscussion presenting open questions and future directions, which will benefit and hopefully inspire next-generation researchers.
This book deals with blow-up of a solution to a system of PDEs that arise in practical situations. It begins with a relatively simple account of blow-up in systems of interaction-diffusion equations, then concentrates on mechanics. In particular it deals with the Euler equations, Navier--Stokes equations, models for glacier physics, Korteweg--de-Vries equations, and ferro-hydrodynamics. Blow-up is treated in Volterra equations, stressing how these equations arise in mechanics, e.g. in combustion theory. Further topics are chemotaxis in mathematical biology, change of type, from hyperbolic to elliptic, instability in soils, instability in sea ice dynamics, instability in pressure-dependent viscosity flow, and energy growth in parallel shear flows. It addresses graduate students and researchers in mechanics.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, BrasilWalter D. Neumann, Columbia University, New York, USAMarkus J. Pflaum, University of Colorado, Boulder, USADierk Schleicher, Jacobs University, Bremen, GermanyKatrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
This book deals with theoretical aspects of modelling the mechanical behaviour of manufacturing, processing, transportation or other systems in which the processed or supporting material is travelling through the system. Examples of such applications include paper making, transmission cables, band saws, printing presses, manufacturing of plastic films and sheets, and extrusion of aluminium foil, textiles and other materials. The work focuses on out-of-plane dynamics and stability analysis for isotropic and orthotropic travelling elastic and viscoelastic materials, with and without fluid-structure interaction, using analytical and semi-analytical approaches. Also topics such as fracturing and fatigue are discussed in the context of moving materials. The last part of the book deals with optimization problems involving physical constraints arising from the stability and fatigue analyses, including uncertainties in the parameters. The book is intended for researchers and specialists in the
field, providing a view of the mechanics of axially moving
materials. It can also be used as a textbook for advanced courses
on this specific topic. Considering topics related to manufacturing
and processing, the book can also be applied in industrial
mathematics.
The question of when and how the basic concepts that characterize modern science arose in Western Europe has long been central to the history of science. This book examines the transition from Renaissance engineering and philosophy of nature to classical mechanics oriented on the central concept of velocity. For this new edition, the authors include a new discussion of the doctrine of proportions, an analysis of the role of traditional statics in the construction of Descartes' impact rules, and go deeper into the debate between Descartes and Hobbes on the explanation of refraction. They also provide significant new material on the early development of Galileo's work on mechanics and the law of fall.
This book is the first of several volumes on solids in the Shock Wave Science and Technology Reference Library. This is a unique collection, and the library as a whole sets out to comprehensively and authoritatively cover and review at research level the subject matter with all its ramifications. All the chapters are self-contained and can be read independently of each other, though they are of course thematically interrelated.
This book is a superb tool in virtually all application areas involving the Kinetic Theory of Gases, Rarefied Gas Dynamics, Transport Theory, and Aerosol Mechanics.It has been especially designed to serve a dual function, both as a teaching instrument either in a classroom environment or at home, and as a reference for scientists and engineers working in relevant fields.The Kinetic Theory of Gases has applications in many areas of science and technology as well as in our understanding of phenomena from the nano- to the cosmic scale.Some of the fields and topics affected include manufacturing, health care, defence, and aerospace science and engineering.
This volume contains eleven contributions on boundary integral equation and boundary element methods. Beside some historical and more analytical aspects in the formulation and analysis of boundary integral equations, modern fast boundary element methods are also described and analyzed from a mathematical point of view. In addition, the book presents engineering and industrial applications that show the ability of boundary element methods to solve challenging problems from different fields.
Classical plasticity theory of metals is independent of the hydrostatic pressure. However if the metal contains voids or pores or if the structure is composed of cells, this classical assumption is no more valid and the influence of the hydrostatic pressure must be incorporated in the constitutive description. Looking at the microlevel, metal plasticity is connected with the uniform planes of atoms organized with long-range order. Planes may slip past each other along their close-packed directions. The result is a permanent change of shape within the crystal and plastic deformation. The presence of dislocations increases the likelihood of planes slipping. Nowadays, the theory of pressure sensitive plasticity is successfully applied to many other important classes of materials (polymers, concrete, bones etc.) even if the phenomena on the micro-level are different to classical plasticity of metals. The theoretical background of this phenomenological approach based on observations on the macro-level is described in detail in this monograph and applied to a wide range of different important materials in the last part of this book.
Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a complex process involving the calculus of variations, the authors carefully lay out step-by-step the most important theorems and concepts. Numerous examples are worked to demonstrate how to apply the theories to everything from classical problems (e.g., crossing a river in minimum time) to engineering problems (e.g., minimum-fuel launch of a satellite). Throughout the book use is made of the time-optimal launch of a satellite into orbit as an important case study with detailed analysis of two examples: launch from the Moon and launch from Earth. For launching into the field of optimal solutions, look no further!
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.
In this thesis the author discusses the phenomenology of supersymmetric models by means of experimental data set analysis of the electric dipole moment. There is an evaluation of the elementary processes contributing to the electric dipole moments within R-parity-violating supersymmetry, which call for higher-order perturbative computations. A new method based on linear programming is developed and for
the first time the non-trivial parameter space of R-parity
violation respecting the constraints from existing experimental
data of the electric dipole moment is revealed. As well, the
impressive efficiency of the new method in scanning the parameter
space of the R-parity-violating sector is effectively demonstrated.
This new method makes it possible to extract from the experimental
data a more reliable constraint on the R-parity violation.
The discovery of uniform latex particles by polymer chemists of the Dow Chemical Company nearly 50 years ago opened up new exciting fields for scientists and physicians and established many new biomedical applications. Many in vitro diagnostic tests such as the latex agglutination tests, analytical cell and phagocytosis tests have since become rou tine. They were all developed on the basis of small particles bound to biological active molecules and fluorescent and radioactive markers. Further developments are ongoing, with the focus now shifted to applications of polymer particles in the controlled and di rected transport of drugs in living systems. Four important factors make microspheres interesting for in vivo applications: First, biocompatible polymer particles can be used to transport known amounts of drug and re lease them in a controlled fashion. Second, particles can be made of materials which bio degrade in living organisms without doing any harm. Third, particles with modified surfaces are able to avoid rapid capture by the reticuloendothelial system and therefore en hance their blood circulation time. Fourth, combining particles with specific molecules may allow organ-directed targeting."
Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Fryba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations such as beams and plates. More complex structures such as frames, grids, shells, and three-dimensional objects, can be treated with the use of the solutions given in this book.
This textbook introduces readers to the detailed and methodical resolution of classical and more recent problems in analytical mechanics. This valuable learning tool includes worked examples and 40 exercises with step-by-step solutions, carefully chosen for their importance in classical, celestial and quantum mechanics. The collection comprises six chapters, offering essential exercises on: (1) Lagrange Equations; (2) Hamilton Equations; (3) the First Integral and Variational Principle; (4) Canonical Transformations; (5) Hamilton - Jacobi Equations; and (6) Phase Integral and Angular Frequencies Each chapter begins with a brief theoretical review before presenting the clearly solved exercises. The last two chapters are of particular interest, because of the importance and flexibility of the Hamilton-Jacobi method in solving many mechanical problems in classical mechanics, as well as quantum and celestial mechanics. Above all, the book provides students and teachers alike with detailed, point-by-point and step-by-step solutions of exercises in Lagrangian and Hamiltonian mechanics, which are central to most problems in classical physics, astronomy, celestial mechanics and quantum physics.
This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, ever y entry is followed by a cross-reference to other related subject entries in the dictionary.
This book is a compilation of selected papers from the 2014 New Trends in Fatigue and Fracture (NT2F14) Conference, which was held in Belgrade, Serbia. This prestigious conference brought together delegates from around the globe to discuss how to characterize, predict and analyze the fatigue and fracture of engineering materials, components, and structures using theoretical, experimental, numerical and practical approaches. It highlights some important new trends in fracture mechanics presented at the conference, such as: * two-parameter fracture mechanics, arising from the coupling of fracture toughness and stress constraints * high-performance steel for gas and oil transportation and production (pressure vessels and boilers) * safety and reliability of welded joints This book includes 12 contributions from well-known international scientists and a special tribute dedicated to the scientific contributions of Stojan Sedmark, who passed away in 2014.
This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion, Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interested in these fields.
This book focuses on mathematical theory and numerical simulation related to various aspects of continuum mechanics, such as fracture mechanics, elasticity, plasticity, pattern dynamics, inverse problems, optimal shape design, material design, and disaster estimation related to earthquakes. Because these problems have become more important in engineering and industry, further development of mathematical study of them is required for future applications. Leading researchers with profound knowledge of mathematical analysis from the fields of applied mathematics, physics, seismology, engineering, and industry provide the contents of this book. They help readers to understand that mathematical theory can be applied not only to different types of industry, but also to a broad range of industrial problems including materials, processes, and products.
Gradually-varied flow (GVF) is a steady non-uniform flow in an open channel with gradual changes in its water surface elevation. The evaluation of GVF profiles under a specific flow discharge is very important in hydraulic engineering. This book proposes a novel approach to analytically solve the GVF profiles by using the direct integration and Gaussian hypergeometric function. Both normal-depth- and critical-depth-based dimensionless GVF profiles are presented. The novel approach has laid the foundation to compute at one sweep the GVF profiles in a series of sustaining and adverse channels, which may have horizontal slopes sandwiched in between them.
The intention of this booklet is a brief but general introduction into the treatment of the Finite Element Method (FEM). The FEM has become the leading method in computer-oriented mechanics, so that many scienti?c brancheshavegrownup besides overthelastdecades. Nevertheless,theFEM today is a question of economy. On the one hand its industrial application is forced to reduce product development costs and time, on the other hand a large number of commercial FEM codes and a still growing number of software for e?ective pre- and postprocessors are available in the meantime. Due to that, today it is a quite challenging task to operate with all these di?erent tools at the same time and to understand all handling and so- tion techniques developed over the last years. So, we want to help in getting a deeper insight into the main "interfaces" between the "customers of the FEM" and the codes itself by providing a totally open structured FE-code based on Matlab, which is a very powerful tool in operating with matrix based formulations. That idea and conditions forced us some years ago to initiateDAEdalon as a tool for general FE developments in research appli- tions. In spite of still existing high sophisticated - mostly commercial - FE codes, the success and the acceptance of such a structured tool justify that decision afterwards more and more.
This book gives state-of-the-art information about recent developments in the field of computational modeling of solid materials at finite strains. It contains papers presented at the IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains. Today, computational methods and simulation techniques play a central role in advancing the understanding of complex material behavior. Material behavior is nowadays modeled in the strongly nonlinear range by taking into account finite strains, complex hysteresis effect, fracture phenomena and multiscale features. Progress in this field is of fundamental importance for many engineering disciplines, especially those concerned with material testing, safety, reliability and serviceability analyses of engineering structures. This book summarizes recent progress in the modeling of solid materials undergoing deformations large strains, where the mathematical and computational analysis is highly challenging due to the nonlinear geometry. A further key aspect of the volume is the modeling of multiscale characteristics of materials by homogenization approaches and variational methods. The volume provides a state of the art survey about theoretical and computational approaches to (i) modeling of large-strain elastic and inelastic deformations of solids on different length scales, (ii) mathematical analysis of finite inelastic deformations of solids based on incremental variational formulations for non-convex problems with microstructure developments and (iii) homogenization methods for the determination of effective overall properties of heterogeneous materials. The book allows researchers and engineers to get an excellent overview aboutthe computational methods for solid materials at finite strains.
This book presents new insights into Leibniz's research on planetary theory and his system of pre-established harmony. Although some aspects of this theory have been explored in the literature, others are less well known. In particular, the book offers new contributions on the connection between the planetary theory and the theory of gravitation. It also provides an in-depth discussion of Kepler's influence on Leibniz's planetary theory and more generally, on Leibniz's concept of pre-established harmony. Three initial chapters presenting the mathematical and physical details of Leibniz's works provide a frame of reference. The book then goes on to discuss research on Leibniz's conception of gravity and the connection between Leibniz and Kepler.
What is Dynamics about? In broad terms, the goal of Dynamics is to describe the long term evolution of systems for which an "infinitesimal" evolution rule is known. Examples and applications arise from all branches of science and technology, like physics, chemistry, economics, ecology, communications, biology, computer science, or meteorology, to mention just a few. These systems have in common the fact that each possible state may be described by a finite (or infinite) number of observable quantities, like position, velocity, temperature, concentration, population density, and the like. Thus, m the space of states (phase space) is a subset M of an Euclidean space M . Usually, there are some constraints between these quantities: for instance, for ideal gases pressure times volume must be proportional to temperature. Then the space M is often a manifold, an n-dimensional surface for some n < m. For continuous time systems, the evolution rule may be a differential eq- tion: to each state x G M one associates the speed and direction in which the system is going to evolve from that state. This corresponds to a vector field X(x) in the phase space. Assuming the vector field is sufficiently regular, for instance continuously differentiable, there exists a unique curve tangent to X at every point and passing through x: we call it the orbit of x. |
![]() ![]() You may like...
Modeling and Simulating Complex Business…
Zoumpolia Dikopoulou
Hardcover
R3,608
Discovery Miles 36 080
Deep Neural Evolution - Deep Learning…
Hitoshi Iba, Nasimul Noman
Hardcover
R5,292
Discovery Miles 52 920
New Biomedical Materials - Basic and…
P.I. Haris, D. Chapman
Hardcover
R2,931
Discovery Miles 29 310
Research Anthology on Architectures…
Information R Management Association
Hardcover
R13,706
Discovery Miles 137 060
Cybernetics, Cognition and Machine…
Vinit Kumar Gunjan, P.N Suganthan, …
Hardcover
R5,653
Discovery Miles 56 530
|