![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics > General
This book reviews the phenomenology displayed by relativistic jets as well as the most recent theoretical efforts to understand the physical mechanisms at their origin. Relativistic jets have been observed and studied in Active Galactic Nuclei (AGN) for about half a century and are believed to be fueled by accretion onto a supermassive black hole at the center of the host galaxy. Since the first discovery of relativistic jets associated with so-called "micro-quasars" much more recently, it has seemed clear that much of the physics governing the relativistic outflows in stellar X-ray binaries harboring black holes and in AGN must be common, but acting on very different spatial and temporal scales. With new observational and theoretical results piling up every day, this book attempts to synthesize a consistent, unified physical picture of the formation and disruption of jets in accreting black-hole systems. The chapters in this book offer overviews accessible not only to specialists but also to graduate students and astrophysicists working in other areas. Covered topics comprise Relativistic jets in stellar systems Launching of AGN jets Parsec-scale AGN jets Kiloparsec-scale AGN jets Black hole magnetospheres Theory of relativistic jets The structure and dynamics of the inner accretion disk The origin of the jet magnetic field X-ray observations, phenomenology, and connection with theory
In early April 1911 Albert Einstein arrived in Prague to become full professor of theoretical physics at the German part of Charles University. It was there, for the first time, that he concentrated primarily on the problem of gravitation. Before he left Prague in July 1912 he had submitted the paper Relativitat und Gravitation: Erwiderung auf eine Bemerkung von M. Abraham in which he remarkably anticipated what a future theory of gravity should look like. At the occasion of the Einstein-in-Prague centenary an international meeting was organized under a title inspired by Einstein's last paper from the Prague period: "Relativity and Gravitation, 100 Years after Einstein in Prague." The main topics of the conference included: classical relativity, numerical relativity, relativistic astrophysics and cosmology, quantum gravity, experimental aspects of gravitation and conceptual and historical issues. The conference attracted over 200 scientists from 31 countries, among them a number of leading experts in the field of general relativity and its applications. This volume includes abstracts of the plenary talks and full texts of contributed talks and articles based on the posters presented at the conference. These describe primarily original results of the authors. Full texts of the plenary talks are included in the volume "General Relativity, Cosmology and Astrophysics--Perspectives 100 Years after Einstein in Prague," eds. J. Bi ak and T. Ledvinka, published also by Springer Verlag."
1 Grundlagen der Dynamik regelungstechnischer Systeme.- 1.1 Allgemeine Zielsetzung der Regelungstechnik.- 1.2 Regelkreis.- 1.3 Voraussetzungen fur Blockorientierung und Regelkreisbildung.- 1.4 Aufgaben der Regelungstechnik.- 1.5 UEbertragungsfunktion und Regelungssystemtheorie.- 1.6 Anfangsbedingungen und Nullstellen der UEbertragungsfunktion.- 1.7 Ausgangssignal Xa(s) bei x a(k)(0?)=0.- 1.8 Nichtverschwindende Vorgeschichte xa(k)(0?)?0.- 1.9 Analyse im Spektralbereich. Verknupfung mehrerer Elemente.- 1.10 Regelstrecke und Stoergroessen.- 1.11 Einschleifiger Standardregelkreis.- 1.12 Sensitivitat.- 1.13 Differentielle Sensitivitat fur den Standardregelkreis.- 1.14 Linearisierung.- 1.15 Regelkreis im Signalflussdiagramm.- 1.16 Spezielle Elemente regelungstechnischer Systeme.- 1.16.1 Rationale UEbertragungselemente.- 1.16.2 Totzeit-Elemente.- 1.16.3 Allpass-Elemente.- 1.16.4 Laufzeitelemente.- 2 Regelkreisanalyse im Zeitbereich.- 2.1 Regelkreis-Reaktion auf einfache Signale.- 2.2 Mehrfache Polstellen von Xa(s).- 2.3 Naherung fur kleine Zeitwerte.- 2.4 Naherung fur grosse Zeitwerte.- 2.5 Faltungsintegral und Naherung durch Faltungssumme.- 2.6 Regelungen mit Totzeitelementen.- 3 Formulierung kontinuierlicher Regelungssysteme im Zustandsraum.- 3.1 Grundlagen.- 3.2 Transitionsmatrix (Fundamentalmatrix).- 3.3 Potenzreihenentwicklung der Transitionsmatrix.- 3.4 Zustandsregler. Fuhrungs- und Stoerungsverhalten.- 3.5 Vorfilterbemessung.- 4 Analyseverfahren im Frequenzbereich.- 4.1 Frequenzgang.- 4.2 Ortskurven des Frequenzgangs.- 4.3 Ortskurven von typischen stabilen Regelkreis-Element en.- 4.4 Ortskurven instabiler Regelkreiselemente.- 4.5 Frequenzgangsortskurve des Regelkreises.- 4.6 Ermittlung von Zeitbereichssignalen aus dem Frequenzbereich.- 4.7 Ermittlung des Frequenzganges aus der gemessenen Systemantwort.- 4.8 Bode-Diagramm.- 4.9 Phasenminimum-Beziehungen.- 4.10 Knickstellen der Regelschleife und des Regelkreises.- 4.11 H?-Norm einer UEbertragungsfunktion.- 5 Regelstrecken im Regelkreis.- 5.1 Antriebe. Allgemeines.- 5.2 Stromrichtergespeiste Gleichstromantriebe.- 5.3 Stromleitverfahren.- 5.4 Begrenzungsregelung.- 5.5 Kupplungselastizitat.- 5.6 Umrichtergespeiste Asynchronmaschine.- 5.7 Thermische Regelstrecken.- 5.7.1 Durchlauferhitzer, Warmetauscher.- 5.7.2 Kessel und Turbine.- 5.8 Hydraulische Regelstrecken.- 5.9 Pneumatische Regelstrecke.- 5.10 Mechanische Positionsregelstrecken.- 5.10.1 Einfache Fahrzeuglenkung.- 5.10.2 Balancierung.- 5.10.3 Passagierflugzeug.- 5.10.4 Raketenantrieb.- 5.11 Verfahrenstechnische Regelstrecken.- 5.12 Elektronische und nachrichtentechnische Regelstrecken.- 5.12.1 Verstarkungsausgleich.- 5.12.2 Scharfabstimmung.- 5.12.3 Zeilensynchronisierung.- 5.12.4 Rauschunterdruckung.- 5.13 Phase-Locked Loops (PLL).- 5.13.1 Phase-Locked Loop in analoger Ersatzrechnung.- 5.13.2 Regelungen an einem CD-Player.- 5.14 Schaltzeichen (Sinnbilder) fur technische Regelstrecken.- 5.15 Volkswirtschaftliche Regelungen.- 5.16 Physiologische und psychische Regelkreise.- 5.17 Soziologische Regelungen.- 6 Stellglieder und Verstarker.- 6.1 Stromrichterstellglieder.- 6.2 Umrichter fur Drehfeldmaschinen.- 6.3 Stellmotoren fur mechanische Positionierung.- 6.4 Stellglieder fur Flussigkeits-, Gasstroeme u. koernige Stoffe.- 6.5 Schaltzeichen fur Stellglieder und Verstarker.- 7 Regelungstechnischer Einsatz von Sensoren und Messumformern.- 7.1 Anforderungen.- 7.2 Messrauschen.- 7.3 Leistung eines Rauschsignales.- 8 Identifikationsverfahren.- 8.1 Auswertung der Sprungantwort von PDT1-Elementen.- 8.2 Auswertung der Sprungantwort von PT2-Elementen.- 8.3 Wendetangentenmethode bei PT2-Elementen.- 8.4 Auswertung der Sprungantwort von IT1-Elementen.- 8.5 Momentenmethode an der Gewichtsfunktion.- 8.6 Identifikation mit Hilfsregler.- 8.7 Identifikation mit fiktivem Serienelement.- 8.8 Regressionsanalyse. Quadratische Ausgleichsrechnung.- 9 Regler. Ausfuhrung und Dimensionierung.- 9.1 Operationsverstarker.- 9.2 Elektr
This book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a unique self-contained source for both theoretically and application oriented graduate and doctoral students, university teachers, researchers and engineers of mechanical, civil and mechatronic engineering.
This volume contains eight state of the art contributions on mathematical aspects and applications of fast boundary element methods in engineering and industry. This covers the analysis and numerics of boundary integral equations by using differential forms, preconditioning of hp boundary element methods, the application of fast boundary element methods for solving challenging problems in magnetostatics, the simulation of micro electro mechanical systems, and for contact problems in solid mechanics. Other contributions are on recent results on boundary element methods for the solution of transient problems. This book is addressed to researchers, graduate students and practitioners working on and using boundary element methods. All contributions also show the great achievements of interdisciplinary research between mathematicians and engineers, with direct applications in engineering and industry.
This book describes significant tractable models used in solid mechanics - classical models used in modern mechanics as well as new ones. The models are selected to illustrate the main ideas which allow scientists to describe complicated effects in a simple manner and to clarify basic notations of solid mechanics. A model is considered to be tractable if it is based on clear physical assumptions which allow the selection of significant effects and relatively simple mathematical formulations. The first part of the book briefly reviews classical tractable models for a simple description of complex effects developed from the 18th to the 20th century and widely used in modern mechanics. The second part describes systematically the new tractable models used today for the treatment of increasingly complex mechanical objects - from systems with two degrees of freedom to three-dimensional continuous objects.
This book discusses the design of new space missions and their use for a better understanding of the dynamical behaviour of solar system bodies, which is an active field of astrodynamics. Space missions gather data and observations that enable new breakthroughs in our understanding of the origin, evolution and future of our solar system and Earth's place within it. Covering topics such as satellite and space mission dynamics, celestial mechanics, spacecraft navigation, space exploration applications, artificial satellites, space debris, minor bodies, and tidal evolution, the book presents a collection of contributions given by internationally respected scientists at the summer school "Satellite Dynamics and Space Missions: Theory and Applications of Celestial Mechanics", held in 2017 at San Martino al Cimino, Viterbo (Italy). This school aimed to teach the latest theories, tools and methods developed for satellite dynamics and space, and as such the book is a valuable resource for graduate students and researchers in the field of celestial mechanics and aerospace engineering.
This volume presents the Proceedings of the 10th International Conference on Vibration Problems, 2011, Prague, Czech Republic. ICOVP 2011 brings together again scientists from different backgrounds who are actively working on vibration-related problems of engineering both in theoretical and applied fields, thus facilitating a lively exchange of ideas, methods and results between the many different research areas. The aim is that reciprocal intellectual fertilization will take place and ensure a broad interdisciplinary research field. The topics, indeed, cover a wide variety of vibration-related subjects, from wave problems in solid mechanics to vibration problems related to biomechanics. The first ICOVP conference was held in 1990 at A.C. College, Jalpaiguri, India, under the co-chairmanship of Professor M.M. Banerjee and Professor P. Biswas. Since then it has been held every 2 years at various venues across the World.
Mathematics is undoubtedly the key to state-of-the-art high technology. It is aninternationaltechnicallanguageandprovestobeaneternallyyoungscience to those who have learned its ways. Long an indispensable part of research thanks to modeling and simulation, mathematics is enjoying particular vit- ity now more than ever. Nevertheless, this stormy development is resulting in increasingly high requirements for students in technical disciplines, while general interest in mathematics continues to wane at the same time. This book and its appendices on the Internet seek to deal with this issue, helping students master the di?cult transition from the receptive to the productive phase of their education. The author has repeatedly held a three-semester introductory course - titled Higher Mathematics at the University of Stuttgart and used a series of "handouts" to show further aspects, make the course contents more motiv- ing, and connect with the mechanics lectures taking place at the same time. One part of the book has more or less evolved from this on its own. True to the original objective, this part treats a variety of separate topics of varying degrees of di?culty; nevertheless, all these topics are oriented to mechanics. Anotherpartofthisbookseekstoo?eraselectionofunderstandablereal- ticmodelsthatcanbeimplementeddirectlyfromthemultitudeofmathema- calresources.TheauthordoesnotattempttohidehispreferenceofNumerical Mathematics and thus places importance on careful theoretical preparation.
The study of mechanics is presented as the fundamental basis of the electromagnetic theory, quantum mechanics, and all theoretical physics. Mathematical difficulty and order of historical development have determined the order of presenting the material.
This textbook is for advanced students who already are familiar with the elementary concepts of statics and the strength of materials. The principles of linear continuum mechanics and linear elastic material behavior are presented. They build the foundation for the later treatment of structures such as beams, bars, plates and shells. Particular attention is paid to the respective thin-walled cases. The text also contains some chapters on the more and more important topic of dynamics of structures. Moreover, it provides the fundamental principles underlying modern computer methods. The book is structured such that in each chapter the theoretical considerations are accompanied by several illustrative examples demonstrating the application of these results. At the end of each chapter, additional problems are included. The solutions to these problems are given in the last chapter.
This book presents the theory of continuum mechanics for mechanical, thermodynamical, and electrodynamical systems. It shows how to obtain governing equations and it applies them by computing the reality. It uses only open-source codes developed under the FEniCS project and includes codes for 20 engineering applications from mechanics, fluid dynamics, applied thermodynamics, and electromagnetism. Moreover, it derives and utilizes the constitutive equations including coupling terms, which allow to compute multiphysics problems by incorporating interactions between primitive variables, namely, motion, temperature, and electromagnetic fields. An engineering system is described by the primitive variables satisfying field equations that are partial differential equations in space and time. The field equations are mostly coupled and nonlinear, in other words, difficult to solve. In order to solve the coupled, nonlinear system of partial differential equations, the book uses a novel collection of open-source packages developed under the FEniCS project. All primitive variables are solved at once in a fully coupled fashion by using finite difference method in time and finite element method in space.
This second volume of the series Lecture Notes in Applied and Computational Mechanics is the second part of the compendium of reviewed articles presented at the 11th EUROMECH-MECAMAT conference entitled "Mechanics of microstructured solids: cellular materials, fibre reinforced solids and soft tissues," which took place in Torino (Italy) in March 10-14, 2008, at the Museo Regional delle Scienze. This EUROMECH-MECAMAT conference was jointly organized by the Dipartimento di Matematica dell'Universita di Torino, Italy and the INPL Institute (LEMTA, Nancy-Universite, France). Prof. Franco Pastrone and Prof. Jean-Francois Ganghoffer were the co-chairmen.
Vibro-impact dynamics has occupied a wide spectrum of studies by dyn- icists, physicists, and mathematicians. These studies may be classi?ed into three main categories: modeling, mapping and applications. The main te- niques used in modeling of vibro-impact systems include phenomenological modelings, Hertzian models, and non-smooth coordinate transformations- velopedbyZhuravlevandIvanov. Oneofthemostcriticalsituationsimpeded invibro-impactsystemsisthegrazingbifurcation. Grazingbifurcationisu- ally studied through discontinuity mapping techniques, which are very useful to uncover the rich dynamics in the process of impact interaction. Note the availablemappings arevalidonly intheabsenceofnon-impactnonlinearities. Complex dynamic phenomena of vibro-impact systems include subharmonic oscillations, chaotic motion, and coexistence of di?erent attractors for the sameexcitationand systemparametersbut under di?erent initial conditions. Selectedapplicationsofvibro-impactdynamics. Theseincludelumpedand continuous systems. Lumped systems cover a bouncing ball on an oscillating barrier, mass-spring-dashpot systems, normal and inverted pendulums, the spherical pendulum, the ship roll motion against icebergs, joints with fr- play, rotor-stator rubbing in rotating machinery, vocal folds, microactuators, strings, beams, pipes conveying ?uids with end-restraints, nuclear reactors and heat exchangers, and plates. These applications are discussed within the framework of the deterministic theory. Under random excitation the tre- ment requires special tools. The techniques of equivalent linearization and stochastic averaging have been applied to limited number of problems. One of the most bene?cial outcomesof vibro-impact dynamics is the development of impact dampers, which have witnessed signi?cant activities over the last four decades and have been used in several applications. On the other hand, vibro-impacthas detrimental e?ects on the operationsof mechanicalsystems and damage of pipes and rods in nuclear reactors.
This work investigates gravitational wave production in the early universe and identifies potentially observable features, thereby paving the way for future gravitational wave experiments. It focuses on gravitational wave production in two scenarios: inflation in a model inspired by loop quantum gravity, and preheating at the end of inflation. In the first part, it is demonstrated that gravitational waves' spectrum differs from the result obtained using ordinary general relativity, with potentially observable consequences that could yield insights into quantum gravity. In the second part, it is shown that the cosmic gravitational wave background is anisotropic at a level that could be detected by future experiments. Gravitational waves promise to be an rich source of information on the early universe. To them, the universe has been transparent from its earliest moments, so they can give us an unobstructed view of the Big Bang and a means to probe the fundamental laws of nature at very high energies.
This book deals in a modern manner with a family of named problems from an old and mature subject, classical elasticity. These problems are formulated over either a half or the whole of a linearly elastic and isotropic two- or three-dimensional space, subject to loads concentrated at points or lines. The discussion of each problem begins with a careful examination of the prevailing symmetries, and proceeds with inverting the canonical order, in that it moves from a search for balanced stress fields to the associated strain and displacement fields. The book, although slim, is fairly well self-contained; the only prerequisite is a reasonable familiarity with linear algebra (in particular, manipulation of vectors and tensors) and with the usual differential operators of mathematical physics (gradient, divergence, curl, and Laplacian); the few nonstandard notions are introduced with care. Support material for all parts of the book is found in the final Appendix.
This book develops a modern presentation of Continuum Mechanics, oriented towards numerical applications in the ?elds of nonlinear analysis of solids, structures and ?uids. Kinematics of the continuum deformation, including pull-back/push-forward transformations between di erent con?gurations; stress and strain measures; objective stress rate and strain rate measures; balance principles; constitutive relations, with emphasis on elasto-plasticity of metals and variational prin- ples are developed using general curvilinear coordinates. Being tensor analysis the indispensable tool for the development of the continuum theory in general coordinates, in the appendix an overview of t- soranalysisisalsopresented. Embedded in the theoretical presentation, application examples are dev- oped to deepen the understanding of the discussed concepts. Even though the mathematical presentation of the di erent topics is quite rigorous; an e ort is made to link formal developments with engineering ph- ical intuition. This book is based on two graduate courses that the authors teach at the Engineering School of the University of Buenos Aires and it is intended for graduate engineering students majoring in mechanics and for researchers in the ?elds of applied mechanics and numerical methods. VIII Preface I am grateful to Klaus-Jurgen Bathe for introducing me to Computational Mechanics, for his enthusiasm, for his encouragement to undertake challenges and for his friendship."
This book contains contributions from the Spanish Relativity Meeting, ERE 2012, held in" "Guimaraes, Portugal, September 2012. It features more than 70 papers on a range of topics in general relativity and gravitation, from mathematical cosmology, numerical relativity and black holes to string theory and quantum gravity. Under the title "Progress in Mathematical Relativity, Gravitation and Cosmology," ERE 2012 was attended by an exceptional international list of over a hundred participants from the five continents and over forty countries. ERE is organized every year by one of the Spanish or Portuguese groups working in this area and is supported by the Spanish Society of Gravitation and Relativity (SEGRE). This book will be of interest to researchers in mathematics and physics. "
In 1998 the chairman of the Russian National Committee of TMM Professor Arcady Bessonov, recommended one of authors of this book to be come a member of the IFToMM Permanent Commission on the History of Mechanisms and Machines Sciences (PC HMMS). Willy-nilly from this time the history of technique, as hobby passed on to a serious the employment in the history of engineering science. Interest history of a subject is natural for Professor, a leading a course of Theory of Mechanisms and Machines in Bauman University. This interest is supported by the fact that Bauman University is one of the oldest technical universities in Russia, and the course "Applied Mechanics" - later "Theory of Mechanisms and Machines" was the first systematic course in Russia. The second author supervises a cycle of laboratory works on TMM. Models of mechanisms are placed in laboratory in show-windows of ancient cases quite possibly coevals of the first course. He became interested in contents of these cases: firstly in models, and then in their origin. Later he occupied himself with the creation of a web-site "The Collection of mechanisms in department TMM in Bauman University". Gradually both authors had the idea of cooperation, although several years previously, we could not imagine this happening. We took an active part in the work of PC HMMS from 2000. It was promoted by of chairman of the commission Professor Marco Ceccarelli.
The revised and enlarged third edition of this successful book presents a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied and updated applications. In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. "Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, "improves onanalready highlycomplete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide."
This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.
This book gives a detailed, up-to-date account of the Lense-Thirring effect and its implications for physics and astrophysics. Starting from a profound intuition of Lense and Thirring in 1918, based on a simple solution to the linearized Einstein field equations, this has emerged in the past four decades as a phenomenon of extraordinary importance in cosmology, radio jets in quasars, and the physics of neutron stars and black holes, besides leading to some of the most sophisticated experiments ever performed in the space surrounding our planet. The book contains the contributions presented at the "Third William Fairbank Meeting," which have been expanded by adding a complete set of classical and prominent contemporary papers on this subject and a general introduction by R Ruffini.
This thesis presents valuable contributions to several aspects of the rapidly growing field of gravitational wave astrophysics. The potential sources of gravitational waves in globular clusters are analyzed using sophisticated dynamics simulations involving intermediate mass black holes and including, for the first time, high-order post-Newtonian corrections to the equations of motion. The thesis further demonstrates our ability to accurately measure the parameters of the sources involved in intermediate-mass-ratio inspirals of stellar-mass compact objects into hundred-solar-mass black holes. Lastly, it proposes new techniques for the computationally efficient inference on gravitational waves. On 14 September 2015, the LIGO observatory reported the first direct detection of gravitational waves from the merger of a pair of black holes. For a brief fraction of a second, the power emitted by this merger exceeded the combined output of all stars in the visible universe. This has since been followed by another confirmed detection and a third candidate binary black hole merger. These detections heralded the birth of an exciting new field: gravitational-wave astrophysics.
This book contains advanced-level research material in the area of lubrication theory and related aspects, presented by eminent researchers during the International Conference on Advances in Tribology and Engineering Systems (ICATES 2013) held at Gujarat Technological University, Ahmedabad, India during October 15 17, 2013. The material in this book represents the advanced field of tribology and reflects the work of many eminent researchers from both India and abroad. The treatment of the presentations is the result of the contributions of several professionals working in the industry and academia. This book will be useful for students, researchers, academicians, and professionals working in the area of tribology, in general, and bearing performance characteristics, in particular, especially from the point-of-view of design. This book will also appeal to researchers and professionals working in fluid-film lubrication and other practical applications of tribology. A wide range of topics has been included despite space and time constraints. Basic concepts and fundamentals techniques have been emphasized upon, while also including highly specialized topics and methods (such as nanotribology, bio-nanotribology). Care has been taken to generate interest for a wide range of readers, considering the interdisciplinary nature of the subject."
These proceedings collect the selected contributions of participants of the First Karl Schwarzschild Meeting on Gravitational Physics, held in Frankfurt, Germany to celebrate the 140th anniversary of Schwarzschild's birth. They are grouped into 4 main themes: I. The Life and Work of Karl Schwarzschild; II. Black Holes in Classical General Relativity, Numerical Relativity, Astrophysics, Cosmology, and Alternative Theories of Gravity; III. Black Holes in Quantum Gravity and String Theory; IV. Other Topics in Contemporary Gravitation. Inspired by the foundational principle ``By acknowledging the past, we open a route to the future", the week-long meeting, envisioned as a forum for exchange between scientists from all locations and levels of education, drew participants from 15 countries across 4 continents. In addition to plenary talks from leading researchers, a special focus on young talent was provided, a feature underlined by the Springer Prize for the best student and junior presentations. |
You may like...
Electrodynamics - Problems and Solutions
Carolina C Ilie, Zachariah S. Schrecengost
Paperback
R754
Discovery Miles 7 540
|