|
Books > Science & Mathematics > Physics > Classical mechanics > General
Smart Energy Grid Engineering provides in-depth detail on the
various important engineering challenges of smart energy grid
design and operation by focusing on advanced methods and practices
for designing different components and their integration within the
grid. Governments around the world are investing heavily in smart
energy grids to ensure optimum energy use and supply, enable better
planning for outage responses and recovery, and facilitate the
integration of heterogeneous technologies such as renewable energy
systems, electrical vehicle networks, and smart homes around the
grid. By looking at case studies and best practices that illustrate
how to implement smart energy grid infrastructures and analyze the
technical details involved in tackling emerging challenges, this
valuable reference considers the important engineering aspects of
design and implementation, energy generation, utilization and
energy conservation, intelligent control and monitoring data
analysis security, and asset integrity.
The Performance of Photovoltaic (PV) Systems: Modelling,
Measurement and Assessment explores the system lifetime of a PV
system and the energy output of the system over that lifetime. The
book concentrates on the prediction, measurement, and assessment of
the performance of PV systems, allowing the reader to obtain a
thorough understanding of the performance issues and progress that
has been made in optimizing system performance.
Thermal System Design and Simulation covers the fundamental
analyses of thermal energy systems that enable users to effectively
formulate their own simulation and optimal design procedures. This
reference provides thorough guidance on how to formulate optimal
design constraints and develop strategies to solve them with
minimal computational effort. The book uniquely illustrates the
methodology of combining information flow diagrams to simplify
system simulation procedures needed in optimal design. It also
includes a comprehensive presentation on dynamics of thermal
systems and the control systems needed to ensure safe operation at
varying loads. Designed to give readers the skills to develop their
own customized software for simulating and designing thermal
systems, this book is relevant for anyone interested in obtaining
an advanced knowledge of thermal system analysis and design.
The Outside the Research Lab series is a testament to the fact that
the physics taught to high school and university students IS used
in the real world. This book explores the physics and technology
inherent to a selection of sports which have caught the author's
attention and fascination over the years. Outside the Research Lab,
Volume 3 is a path to discovering how less commonly watched sports
use physics to optimize performance, diagnose injuries, and
increase access to more competitors. It covers Olympic and
Paralympic fencing, show jumping horses, and arguably the most
brutal of motorsports - drag racing. Stunning images throughout the
book and clear, understandable writing are supplemented by offset
detail boxes which take the physics concepts to higher levels.
Outside the Research Lab, Volume 3 is both for the general interest
reader and students in STEM. Lecturers in university physics,
materials science, engineering and other sciences will find this an
excellent basis for teaching undergraduate students the range of
applications for the physics they are learning. There is a vast
range of different areas that require expertise in physics...this
third volume of Outside the Research Lab shows a few with great
detail provided by professionals doing the work.
Tai Chi, a Chinese martial art developed based on the laws of
nature, emphasises how 'to conquer the unyielding with the
yielding.' The recent observation of star formation shows that
stars result from the interaction between gravity, turbulence and
magnetic fields. This interaction again follows the natural rules
that inspired Tai Chi. For example, if self-gravity is the force
that dominates, the molecular cloud will collapse isotropically,
which compresses magnetic field lines. The density of the yielding
field lines increases until magnetic pressure reaches the critical
value to support the cloud against the gravitational force in
directions perpendicular to the field lines (Lorentz force). Then
gravity gives way to Lorentz force, accumulating gas only along the
field lines till the gas density achieves the critical value to
again compress the field lines. The Tai Chi goes on in a self
similar way.
The need for sustainable sources of energy has become more
prevalent in an effort to conserve natural resources, as well as
optimize the performance of wireless networks in daily life.
Renewable sources of energy also help to cut costs while still
providing a reliable power sources. Biologically-Inspired Energy
Harvesting through Wireless Sensor Technologies highlights emerging
research in the areas of sustainable energy management and
transmission technologies. Featuring technological advancements in
green technology, energy harvesting, sustainability, networking,
and autonomic computing, as well as bio-inspired algorithms and
solutions utilized in energy management, this publication is an
essential reference source for researchers, academicians, and
students interested in renewable or sustained energy in wireless
networks.
Reliability, Risk and Safety: Back to the Future covers topics on
reliability, risk and safety issues, including risk and reliability
analysis methods, maintenance optimization, human factors, and risk
management. The application areas range from nuclear engineering,
oil and gas industry, electrical and civil engineering to
information technology and communication, security, transportation,
health and medicine or critical infrastructures. Significant
attention is paid to societal factors influencing the use of
reliability and risk assessment methods, and to combinatorial
analysis, which has found its way into the analysis of
probabilities and risk, from which quantified risk analysis
developed. Integral demonstrations of the use of risk analysis and
safety assessment are provided in many practical applications
concerning major technological systems and structures. Reliability,
Risk and Safety: Back to the Future will be of interest to
academics and engineers interested in nuclear engineering, oil and
gas engineering, electrical engineering, civil engineering,
information technology, communication, and infrastructure.
Compendium of Hydrogen Energy, Volume 2: Hydrogen Storage,
Distribution and Infrastructure focuses on the storage and
transmission of hydrogen. As many experts believe the hydrogen
economy will, at some point, replace the fossil fuel economy as the
primary source of the world's energy, this book details hydrogen
storage in pure form, including chapters on hydrogen liquefaction,
slush production, as well as underground and pipeline storage.
Other sections in the book explore physical and chemical storage,
including environmentally sustainable methods of hydrogen
production from water, with final chapters dedicated to hydrogen
distribution and infrastructure.
Improve and optimize efficiency of HVAC and related energy systems
from an exergy perspective. From fundamentals to advanced
applications, Exergy Analysis of Heating, Air Conditioning, and
Refrigeration provides readers with a clear and concise description
of exergy analysis and its many uses. Focusing on the application
of exergy methods to the primary technologies for heating,
refrigerating, and air conditioning, Ibrahim Dincer and Marc A.
Rosen demonstrate exactly how exergy can help improve and optimize
efficiency, environmental performance, and cost-effectiveness. The
book also discusses the analysis tools available, and includes many
comprehensive case studies on current and emerging systems and
technologies for real-world examples. From introducing exergy and
thermodynamic fundamentals to presenting the use of exergy methods
for heating, refrigeration, and air conditioning systems, this book
equips any researcher or practicing engineer with the tools needed
to learn and master the application of exergy analysis to these
systems.
Containing case studies and examples, the book aims to cover
extensive research particularly on surface stress and topics
related to the variational approach to the subject, and
non-standard topics such as the rigorous treatment of constraints
and a full discussion of algebraic inequalities associated with
realistic material behaviour, and their implications. Serving as an
introduction to the basic elements of Finite Elasticity, this
textbook is the cornerstone for any graduate-level on the topic,
while also providing a template for a host of theories in Solid
Mechanics.
"Advanced Power Generation Systems" examines the full range of
advanced multiple output thermodynamic cycles that can enable more
sustainable and efficient power production from traditional
methods, as well as driving the significant gains available from
renewable sources. These advanced cycles can harness the
by-products of one power generation effort, such as electricity
production, to simultaneously create additional energy outputs,
such as heat or refrigeration. Gas turbine-based, and industrial
waste heat recovery-based combined, cogeneration, and trigeneration
cycles are considered in depth, along with Syngas combustion
engines, hybrid SOFC/gas turbine engines, and other
thermodynamically efficient and environmentally conscious
generation technologies. The uses of solar power, biomass,
hydrogen, and fuel cells in advanced power generation are
considered, within both hybrid and dedicated systems.
The detailed energy and exergy analysis of each type of system
provided by globally recognized author Dr. Ibrahim Dincer will
inform effective and efficient design choices, while emphasizing
the pivotal role of new methodologies and models for performance
assessment of existing systems. This unique resource gathers
information from thermodynamics, fluid mechanics, heat transfer,
and energy system design to provide a single-source guide to
solving practical power engineering problems.
The only complete source of info on the whole array of multiple
output thermodynamic cycles, covering all the design options for
environmentally-conscious combined production of electric power,
heat, and refrigerationOffers crucial instruction on realizing more
efficiency in traditional power generation systems, and on
implementing renewable technologies, including solar, hydrogen,
fuel cells, and biomass Each cycle description clarified through
schematic diagrams, and linked to sustainable development scenarios
through detailed energy, exergy, and efficiency analysesCase
studies and examples demonstrate how novel systems and performance
assessment methods function in practice
Since the earliest days of human existence, the clash of thunder
and trembling of the hills has struck fear into the hearts of
seasoned warriors and tribal villagers alike. Great gods,
demi-gods, and heroes were created to explain the awesome,
mysterious, and incomprehensibly powerful forces of Nature in a
feeble attempt to make sense of the world around them. To our
advanced scientific minds today, these explanations seem childish
and ridiculous; however, the power to flatten thousands of square
miles of ancient forest, create massive holes in the Earth itself,
and cause mountains to tremble to their very roots are more than
enough reason to believe. Indeed, perhaps our scientific
advancement has caused us to not fully or completely appreciate the
awesome scale and power that Nature can wield against us. The study
of shock wave formation and dynamics begins with a study of waves
themselves. Simple harmonic motion is used to analyze the physical
mechanisms of wave generation and propagation, and the principle of
superposition is used to mathematically generate constructive and
destructive interference. Further development leads to the shock
singularity where a single wave of immense magnitude propagates and
decays through various media. Correlations with the fields of
thermodynamics, meteorology, crater formation, and acoustics are
made, as well as a few special applications. Direct correlation is
made to events in Arizona, Siberia, and others. The mathematical
requirement for this text includes trigonometry, differential
equations, and large series summations, which should be accessible
to most beginning and advanced university students. This text
should serve well as supplementary material in a course covering
discrete wave dynamics, applied thermodynamics, or extreme
acoustics.
|
|