![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics > General
Many events that affect global energy production and consumption have occurred since the second edition of Energy in the 21st Century appeared in 2011. For example, an earthquake and tsunami in Japan led to the disruption of the Fukushima nuclear facility and a global re-examination of the safety of the nuclear industry. Oil and natural gas prices continue to be volatile, and the demand for energy has been affected by the global economy. The third edition updates data and the discussion of recent events.Energy in the 21st Century has been used as the text for an introductory energy course for the general college student population. Based on student feedback, we have included several features that enhance the value of the third edition as a textbook. In particular, we have included learning objectives at the beginning of each chapter, end of chapter activities, a comprehensive index, and a glossary. Points to Ponder are abbreviated as P2P in the Learning Objectives boxes and are provided throughout the text. They are designed to encourage the reader to consider the material from different perspectives.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This fourth volume collects authoritative chapters covering several applications of fractional calculus in physics, including classical and continuum mechanics.
This book investigates two possibilities for describing classical-mechanical physical systems along with their Hamiltonian dynamics in the framework of quantum mechanics.The first possibility consists in exploiting the geometrical properties of the set of quantum pure states of "microsystems" and of the Lie groups characterizing the specific classical system. The second approach is to consider quantal systems of a large number of interacting subsystems - i.e. macrosystems, so as to study the quantum mechanics of an infinite number of degrees of freedom and to look for the behaviour of their collective variables. The final chapter contains some solvable models of "quantum measurement" describing dynamical transitions from "microsystems" to "macrosystems".
This book seeks to construct a consistent fundamental quantum theory of gravity, which is often considered one of the most challenging open problems in present-day physics. It approaches this challenge using modern functional renormalization group techniques, and attempts to realize the idea of "Asymptotic Safety" originally proposed by S. Weinberg. Quite remarkably, the book makes significant progress regarding both the fundamental aspects of the program and its phenomenological consequences. The conceptual developments pioneer the construction of a well-behaved functional renormalization group equation adapted to spacetimes with a preferred time-direction. It is demonstrated that the Asymptotic Safety mechanism persists in this setting and extends to many phenomenologically interesting gravity-matter systems. These achievements constitute groundbreaking steps towards bridging the gap between quantum gravity in Euclidean and Lorentzian spacetimes.The phenomenological applications cover core topics in quantum gravity, e.g. constructing a phenomenologically viable cosmological evolution based on quantum gravity effects in the very early universe, and analyzing quantum corrections to black holes forming from a spherical collapse.As a key feature, all developments are presented in a comprehensive and accessible way. This makes the work a timely and valuable guide into the rapidly evolving field of Asymptotic Safety.
This new edition describes pressure and temperature sensitive paints (PSP and TSP) in global surface pressure and temperature measurements in aerodynamics and fluid mechanics. The book includes the latest progress in paint formulations, instrumentation, and steady and unsteady aerodynamic measurements in various facilities including low-speed, transonic, supersonic and hypersonic wind tunnels. The updated technical aspects of PSP and TSP in the book will be useful for students and researchers in experimental aerodynamics and fluid mechanics.
This book addresses problems in three main developments in modern condensed matter physics- namely topological superconductivity, many-body localization and strongly interacting condensates/superfluids-by employing fruitful analogies from classical mechanics. This strategy has led to tangible results, firstly in superconducting nanowires: the density of states, a smoking gun for the long sought Majorana zero mode is calculated effortlessly by mapping the problem to a textbook-level classical point particle problem. Secondly, in localization theory even the simplest toy models that exhibit many-body localization are mathematically cumbersome and results rely on simulations that are limited by computational power. In this book an alternative viewpoint is developed by describing many-body localization in terms of quantum rotors that have incommensurate rotation frequencies, an exactly solvable system. Finally, the fluctuations in a strongly interacting Bose condensate and superfluid, a notoriously difficult system to analyze from first principles, are shown to mimic stochastic fluctuations of space-time due to quantum fields. This analogy not only allows for the computation of physical properties of the fluctuations in an elegant way, it sheds light on the nature of space-time. The book will be a valuable contribution for its unifying style that illuminates conceptually challenging developments in condensed matter physics and its use of elegant mathematical models in addition to producing new and concrete results.
This book presents a basic introduction to quantum mechanics. Depending on the choice of topics, it can be used for a one-semester or two-semester course. An attempt has been made to anticipate the conceptual problems students encounter when they first study quantum mechanics. Wherever possible, examples are given to illustrate the underlying physics associated with the mathematical equations of quantum mechanics. To this end, connections are made with corresponding phenomena in classical mechanics and electromagnetism. The problems at the end of each chapter are intended to help students master the course material and to explore more advanced topics. Many calculations exploit the extraordinary capabilities of computer programs such as Mathematica, MatLab, and Maple. Students are urged to use these programs, just as they had been urged to use calculators in the past. The treatment of various topics is rather complete, in that most steps in derivations are included. Several of the chapters go beyond what is traditionally covered in an introductory course. The goal of the presentation is to provide the students with a solid background in quantum mechanics.
Advances in Energy, Environment and Chemical Engineering collects papers resulting from the conference on Energy, Environment and Chemical Engineering (AEECE 2022), Dali, China, 24-26 June, 2022. The primary goal is to promote research and developmental activities in energy technology, environment engineering and chemical engineering. Moreover, it aims to promote scientific information interchange between scholars from the top universities, business associations, research centers and high-tech enterprises working all around the world. The conference conducts in-depth exchanges and discussions on relevant topics such as energy engineering, environment technology and advanced chemical technology, aiming to provide an academic and technical communication platform for scholars and engineers engaged in scientific research and engineering practice in the field of saving technologies, environmental chemistry, clean production and so on. By sharing the research status of scientific research achievements and cutting-edge technologies, it helps scholars and engineers all over the world comprehend the academic development trend and broaden research ideas. So as to strengthen international academic research, academic topics exchange and discussion, and promote the industrialization cooperation of academic achievements.
This accessible monograph introduces physicists to the general relation between classical and quantum mechanics based on the mathematical idea of deformation quantization and describes an original approach to the theory of quantum integrable systems developed by the author.The first goal of the book is to develop of a common, coordinate free formulation of classical and quantum Hamiltonian mechanics, framed in common mathematical language.In particular, a coordinate free model of quantum Hamiltonian systems in Riemannian spaces is formulated, based on the mathematical idea of deformation quantization, as a complete physical theory with an appropriate mathematical accuracy.The second goal is to develop of a theory which allows for a deeper understanding of classical and quantum integrability. For this reason the modern separability theory on both classical and quantum level is presented. In particular, the book presents a modern geometric separability theory, based on bi-Poissonian and bi-presymplectic representations of finite dimensional Liouville integrable systems and their admissible separable quantizations.The book contains also a generalized theory of classical Stackel transforms and the discussion of the concept of quantum trajectories.In order to make the text consistent and self-contained, the book starts with a compact overview of mathematical tools necessary for understanding the remaining part of the book. However, because the book is dedicated mainly to physicists, despite its mathematical nature, it refrains from highlighting definitions, theorems or lemmas.Nevertheless, all statements presented are either proved or the reader is referred to the literature where the proof is available.
This book is an homage to the pioneering works of E. Aero and G. Maugin in the area of analytical description of generalized continua. It presents a collection of contributions on micropolar, micromorphic and strain gradient media, media with internal variables, metamaterials, beam lattices, liquid crystals, and others. The main focus is on wave propagation, stability problems, homogenization, and relations between discrete and continuous models.
This thesis presents experimental research on the interaction between the optical field and the mechanical oscillator in whispering-gallery mode microcavities. It demonstrates how optomechanical interactions in a microresonator can be used to achieve non-magnetic non-reciprocity and develop all-optically controlled non-reciprocal multifunctional photonic devices. The thesis also discusses the interaction between the travelling optical and mechanical whispering-gallery modes, paving the way for non-reciprocal light storage as a coherent, circulating acoustic wave with a lifetime of up to tens of microseconds. Lastly, the thesis presents a high-frequency phase-sensitive heterodyne vibrometer, operating up to 10 GHz, which can be used for the high-resolution, non-invasive mapping of the vibration patterns of acoustic devices. The results presented here show that optomechanical devices hold great potential in the field of information processing.
Supercritical fluids have been utilized for numerous scientific advancements and industrial innovations. As the concern for environmental sustainability grows, these fluids have been increasingly used for energy efficiency purposes. Advanced Applications of Supercritical Fluids in Energy Systems is a pivotal reference source for the latest academic material on the integration of supercritical fluids into contemporary energy-related applications. Highlighting innovative discussions on topics such as renewable energy, fluid dynamics, and heat and mass transfer, this book is ideally designed for researchers, academics, professionals, graduate students, and practitioners interested in the latest trends in energy conversion.
This book presents a selection of cutting-edge methods that allow readers to obtain novel models for nonlinear solid mechanics. Today, engineers need more accurate techniques for modeling solid body mechanics, chiefly due to innovative methods like additive manufacturing-for example, 3D printing-but also due to miniaturization. This book focuses on the formulation of continuum and discrete models for complex materials and systems, and especially the design of metamaterials. It gathers outstanding papers from the international conference IcONSOM 2019
This handbook makes the arduous task of selecting a rheology modifier for a specific application much easier. Technologists can now avoid searching through the technical literature for likely candidates, contacting suppliers for information and recommendations, and paring the list of candidates down from hundreds to a few dozen. With the information provided by the author of the handbook, users can make choices quickly and easily. The book is divided into four useful sections. Part I reviews the fundamentals of rheology. Part II presents critical details on more than 1,000 commercially available rheology products, arranged alphabetically by chemical type, trade name and supplier's name. Part III focuses on the selection of suitable rheology modifier candidates, summarizing the supplier's recommended applications for each type and covering pertinent regulatory issues when using a modifier in food or pharmaceutical applications. The handbook provides key information on specific rheology modifiers for food, pharmaceutical, cosmetic, and household applications, covering 20 different types manufactured by 26 companies worldwide, and ranging from acrylic polymers to xanthan gum. Part IV contains 227 formulations showing which rheology modifiers are recommended for various applications and how they are incorporated into the formulation. Key Features: - Highly practical book containing ready-to-use information on rheology modifiers not previously available in one source - Step-by-step guide provides all the information needed to select the right agent for each type of application -- and shows how to use it - Saves valuable research time by eliminating the need to contactmultiple suppliers and peruse their catalogs and product sheets - Appendix contains addresses, telephone and fax numbers, email addresses, and websites of manufacturers, plus a trade name directory
This volume presents the latest research and industrial applications in the areas of mechanism science, robotics and dynamics. The respective contributions cover such topics as computational kinematics, control issues in mechanical systems, mechanisms for medical rehabilitation, mechanisms for minimally invasive techniques, cable robots, design issues for mechanisms and robots, and the teaching and history of mechanisms. Written by leading researchers and engineers, and selected by means of a rigorous international peer-review process, the papers highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations. They reflect the outcomes of the 8th European Conference on Mechanism Science (EuCoMeS) in 2020.
This monograph is centered on mathematical modeling, innovative numerical algorithms and adaptive concepts to deal with fracture phenomena in multiphysics. State-of-the-art phase-field fracture models are complemented with prototype explanations and rigorous numerical analysis. These developments are embedded into a carefully designed balance between scientific computing aspects and numerical modeling of nonstationary coupled variational inequality systems. Therein, a focus is on nonlinear solvers, goal-oriented error estimation, predictor-corrector adaptivity, and interface conditions. Engineering applications show the potential for tackling practical problems within the fields of solid mechanics, porous media, and fluidstructure interaction.
This book provides an up-to-date overview of results in rigid body dynamics, including material concerned with the analysis of nonintegrability and chaotic behavior in various related problems. The wealth of topics covered makes it a practical reference for researchers and graduate students in mathematics, physics and mechanics. Contents Rigid Body Equations of Motion and Their Integration The Euler - Poisson Equations and Their Generalizations The Kirchhoff Equations and Related Problems of Rigid Body Dynamics Linear Integrals and Reduction Generalizations of Integrability Cases. Explicit Integration Periodic Solutions, Nonintegrability, and Transition to Chaos Appendix A : Derivation of the Kirchhoff, Poincare - Zhukovskii, and Four-Dimensional Top Equations Appendix B: The Lie Algebra e(4) and Its Orbits Appendix C: Quaternion Equations and L-A Pair for the Generalized Goryachev - Chaplygin Top Appendix D: The Hess Case and Quantization of the Rotation Number Appendix E: Ferromagnetic Dynamics in a Magnetic Field Appendix F: The Landau - Lifshitz Equation, Discrete Systems, and the Neumann Problem Appendix G: Dynamics of Tops and Material Points on Spheres and Ellipsoids Appendix H: On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation Appendix I: The Hamiltonian Dynamics of Self-gravitating Fluid and Gas Ellipsoids
This book provides a compilation of in-depth articles and reviews on key topics within gravitation, cosmology and related issues. It is a celebratory volume dedicated to Prof. Thanu Padmanabhan ("Paddy"), the renowned relativist and cosmologist from IUCAA, India, on the occasion of his 60th birthday. The authors, many of them leaders of their fields, are all colleagues, collaborators and former students of Paddy, who have worked with him over a research career spanning more than four decades. Paddy is a scientist of diverse interests, who attaches great importance to teaching. With this in mind, the aim of this compilation is to provide an accessible pedagogic introduction to, and overview of, various important topics in cosmology, gravitation and astrophysics. As such it will be an invaluable resource for scientists, graduate students and also advanced undergraduates seeking to broaden their horizons.
This book features selected manuscripts presented at ICoNSoM 2019, exploring cutting-edge methods for developing novel models in nonlinear solid mechanics. Innovative methods like additive manufacturing-for example, 3D printing- and miniaturization mean that engineers need more accurate techniques for modeling solid body mechanics. The book focuses on the formulation of continuum and discrete models for complex materials and systems, particularly the design of metamaterials.
An Introduction to the Gas Phase is adapted from a set of lecture notes for a core first year lecture course in physical chemistry taught at the University of Oxford. The book is intended to give a relatively concise introduction to the gas phase at a level suitable for any undergraduate scientist. After defining the gas phase, properties of gases such as temperature, pressure, and volume are discussed. The relationships between these properties are explained at a molecular level, and simple models are introduced that allow the various gas laws to be derived from first principles. Finally, the collisional behavior of gases is used to explain a number of gas-phase phenomena, such as effusion, diffusion, and thermal conductivity.
This book reviews the mathematical modeling and experimental study of systems involving two or more different length scales. The effects of phenomena occurring at the lower length scales on the behavior at higher scales are of intrinsic scientific interest, but can also be very effectively used to determine the behavior at higher length scales or at the macro-level. Efforts to exploit this micro- and macro-coupling are, naturally, being pursued with regard to every aspect of mechanical phenomena. This book focuses on the changes imposed on the dynamics, strength of materials and durability of mechanical systems by related multiscale phenomena. In particular, it addresses: 1: the impacts of effective dissipation due to kinetic energy trapped at lower scales 2: wave propagation in generalized continua 3: nonlinear phenomena in metamaterials 4: the formalization of more general models to describe the exotic behavior of meta-materials 5: the design and study of microstructures aimed at increasing the toughness and durability of novel materials |
![]() ![]() You may like...
Introduction to Programming with Fortran
Ian Chivers, Jane Sleightholme
Hardcover
R3,982
Discovery Miles 39 820
Advances in Mathematical Economics…
Shigeo Kusuoka, Toru Maruyama
Hardcover
Ulam Stability of Operators
Janusz Brzdek, Dorian Popa, …
Paperback
A Level Chemistry For OCR: Year 2 - 500…
Dr Pasan Witharana, MBBS
Paperback
|