![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics > General
As one of the oldest natural sciences, mechanics occupies a certain pioneering role in determining the development of exact sciences through its interaction with mathematics. As a matter of fact, there is hardly an area in mathematics that hasn't found an application of some form in mechanics. It is thus almost inevitable that theoretical methods in mechanics are highly developed and laid out on different levels of abstraction. With the spread of digital processors this goes as far as the implementation in commercial computer codes, where the user is merely con fronted on the surface with the processes that run in the background, i. e. mechan ics as such: in teaching and research, as well as in the context of industry, me chanics is much more, and must remain much more than the mere production of data with the help of a processor. Mechanics, as it is talked about here, tradition ally includes a wide spectrum, ranging from applied mechanics, analytical and technical mechanics to modeling. and experimental mechanics, as well as technical realization. It also includes the subdisciplines of rigid body mechanics, continuum mechanics, or fluid mechanics, to mention only a few. One of the fundamental and most important concepts used by nearly all natural sciences is the concept of linearization, which assumes the differentiability of mappings. As a matter of fact, all of classical mechanics is based on the avail ability of this quality."
This volume contains essays that examine the optical works of Giambattista Della Porta, an Italian natural philosopher during the Scientific Revolution. Coverage also explores the science and technology of early modern optics. Della Porta's groundbreaking book, Magia Naturalis (Natural Magic), includes a prototype of the camera. Yet, because of his obsession with magic, Della Porta's scientific achievements are often forgotten. As the contributors argue, his work inspired such great minds as Johanes Kepler and Francis Bacon. After reading this book, researchers, historians, and students will have a better appreciation of this influential scientist. They will also gain a greater understanding of an important period in the history of optics. Readers will learn about Della Porta's experimental method, a process governed by the protocols, aims, and theoretical assumptions of natural magic. Coverage also discusses the material properties and limitations of optical technology in the early 17th century, based on a recently discovered Dutch spyglass. It also demonstrates how diagrams were instrumental in the discovery of the sine law of refraction. In addition, the book includes an in-depth analysis of previously untranslated Latin sources. This makes the material useful to historians of optics unfamiliar with the language. More than 70 illustrations complement the text.
Most books on continuum mechanics focus on elasticity and fluid mechanics. But whether student or practicing professional, modern engineers need a more thorough treatment to understand the behavior of the complex materials and systems in use today. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity offers a complete tour of the subject that includes not only elasticity and fluid mechanics but also covers plasticity, viscoelasticity, and the continuum model for fatigue and fracture mechanics. In addition to a broader scope, this book also supplies a review of the necessary mathematical tools and results for a self-contained treatment. The author provides finite element formulations of the equations encountered throughout the chapters and uses an approach with just the right amount of mathematical rigor without being too theoretical for practical use. Working systematically from the continuum model for the thermomechanics of materials, coverage moves through linear and nonlinear elasticity using both tensor and matrix notation, plasticity, viscoelasticity, and concludes by introducing the fundamentals of fracture mechanics and fatigue of metals. Requisite mathematical tools appear in the final chapter for easy reference. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity builds a strong understanding of the principles, equations, and finite element formulations needed to solve real engineering problems.
The first volume (General Theory) differs from most textbooks as it emphasizes the mathematical structure and mathematical rigor, while being adapted to the teaching the first semester of an advanced course in Quantum Mechanics (the content of the book are the lectures of courses actually delivered.). It differs also from the very few texts in Quantum Mechanics that give emphasis to the mathematical aspects because this book, being written as Lecture Notes, has the structure of lectures delivered in a course, namely introduction of the problem, outline of the relevant points, mathematical tools needed, theorems, proofs. This makes this book particularly useful for self-study and for instructors in the preparation of a second course in Quantum Mechanics (after a first basic course). With some minor additions it can be used also as a basis of a first course in Quantum Mechanics for students in mathematics curricula. The second part (Selected Topics) are lecture notes of a more advanced course aimed at giving the basic notions necessary to do research in several areas of mathematical physics connected with quantum mechanics, from solid state to singular interactions, many body theory, semi-classical analysis, quantum statistical mechanics. The structure of this book is suitable for a second-semester course, in which the lectures are meant to provide, in addition to theorems and proofs, an overview of a more specific subject and hints to the direction of research. In this respect and for the width of subjects this second volume differs from other monographs on Quantum Mechanics. The second volume can be useful for students who want to have a basic preparation for doing research and for instructors who may want to use it as a basis for the presentation of selected topics.
The Age of Reason is left the Dark Ages of the history of mechanics. Clifford A. Truesdell) 1. 1 THE INVISIBLE TRUTH OF CLASSICAL PHYSICS There are some questions that physics since the days of Newton simply cannot an swer. Perhaps the most important of these can be categorized as 'questions of eth ics', and 'questions of ultimate meaning'. The question of humanity's place in the cosmos and in nature is pre-eminently a philosophical and religious one, and physics seems to have little to contribute to answering it. Although physics claims to have made very fundamental discoveries about the cosmos and nature, its concern is with the coherence and order of material phenomena rather than with questions of mean ing. Now and then thinkers such as Stephen Hawking or Fritjof Capra emerge, who appear to claim that a total world-view can be derived from physics. Generally, however, such authors do not actually make any great effort to make good on their claim to completeness: their answers to questions of meaning often pale in compari 2 son with their answers to conventional questions in physics. Moreover, to the extent that they do attempt to answer questions of meaning, it is easy to show that they 3 draw on assumptions from outside physics."
Defects, dislocations and the general theory.- Approaches to generalized continua.- Generalized continuum modelling of crystal plasticity.- Introduction to discrete dislocation dynamics. The book contains four lectures on generalized continua and dislocation theory, reflecting the treatment of the subject at different scales. G. Maugin provides a continuum formulation of defects at the heart of which lies the notion of the material configuration and the material driving forces of in-homogeneities such as dislocations, disclinations, point defects, cracks, phase-transition fronts and shock waves. C. Sansour and S. Skatulla start with a compact treatment of linear transformation groups with subsequent excursion into the continuum theory of generalized continua. After a critical assessment a unified framework of the same is presented. The next contribution by S. Forest gives an account on generalized crystal plasticity. Finally, H. Zbib provides an account of dislocation dynamics and illustrates its fundamental importance at the smallest scale. In three contributions extensive computational results of many examples are presented.
* New chapter specifically on electric vehicles * Increased international focus, with more examples from outside the USA * Pedagogical features including learning objectives at the start of each chapter, in-chapter questions and end-of-chapter suggested online activities * Student companion website material: multiple choice questions and homework exercises * Instructor companion website material: lecture slides, solution files for instructors; suggested questions for discussion forums to increase engagement; and activities to achieve the chapter learning objectives, including quizzes with answers, that instructors can use to assess student attainment
Millimeter-Wave Waveguides is a monograph devoted to open waveguides for millimeter wave applications. In the first chapters, general waveguide theory is presented (with the emphasis on millimeter wave applications). Next, the book systematically describes the results of both theoretical and experimental studies of rectangular dielectric rod waveguides with high dielectric permittivities. Simple and accurate methods for propagation constant calculations for isotropic as well as anisotropic dielectric waveguides are described. Both analytical and numerical approaches are covered. Different types of transitions have been simulated in order to find optimal configurations as well as optimal dimensions of dielectric waveguides for the frequency band of 75-110 GHz. Simple and effective design is presented. The experimental studies of dielectric waveguides show that Sapphire waveguide can be utilized for this frequency band as a very low-loss waveguide. Design of antennas with low return loss based on dielectric waveguides is also described.
Thematerialsusedinmanufacturingtheaerospace, aircraft, automobile, andnuclear parts have inherent aws that may grow under uctuating load environments during the operational phase of the structural hardware. The design philosophy, material selection, analysis approach, testing, quality control, inspection, and manufacturing are key elements that can contribute to failure prevention and assure a trouble-free structure. To have a robust structure, it must be designed to withstand the envir- mental load throughout its service life, even when the structure has pre-existing aws or when a part of the structure has already failed. If the design philosophy of the structure is based on the fail-safe requirements, or multiple load path design, partial failure of a structural component due to crack propagation is localized and safely contained or arrested. For that reason, proper inspection technique must be scheduled for reusable parts to detect the amount and rate of crack growth, and the possible need for repairing or replacement of the part. An example of a fail-sa- designed structure with crack-arrest feature, common to all aircraft structural parts, is the skin-stiffened design con guration. However, in other cases, the design p- losophy has safe-life or single load path feature, where analysts must demonstrate that parts have adequate life during their service operation and the possibility of catastrophic failure is remote. For example, all pressurized vessels that have single load path feature are classi ed as high-risk parts. During their service operation, these tanks may develop cracks, which will grow gradually in a stable mann
This book was written to give energy-involved professionals the tools they need to take their energy audits to the next level, and use them to accurately predict a building's future energy use and true savings potential. Going beyond the conventional energy audit, which can lead to projections which are frequently off by as much as 20%, this book provides detailed guidelines on how to use the new tool, the investment grade audit (IGA), which enables prediction of savings with much greater accuracy. Building on the traditional audit, the IGA requires the addition of a "risk assessment component" which evaluates conditions in a specific building and/or process and reduces the level of uncertainty as to how proposed energy efficiency measures will really behave over time. The authors have covered every aspect of the IGA, including risk management, the "people" factor, measurement and verification, financing issues, report presentation guidelines, and master planning strategies.
An introduction to certain aspects of developments in the modern theory of dynamics and simulation for a wide audience of scientifically literate readers. Unlike general texts on chaos theory and dynamical systems theory, this book follows the work on a specific problem at the very beginning of the modern era of dynamics, from its inception in 1954 through the early 1970s. It discusses such problems as the nonlinear oscillator simulation, the seminal discoveries at MIT in the early 1950s, the mathematical rediscovery of solitons in the late 1950s and the general problems of computability. In following these developments, the initial development of many of the now standard techniques of nonlinear modelling and numerical simulation are seen. No other text focuses so tightly and covers so completely one specific, pernicious problem at the heart of dynamics.
New edition of the popular textbook, comprehensively updated throughout and now includes a new dedicated website for gas dynamic calculations The thoroughly revised and updated third edition of Fundamentals of Gas Dynamics maintains the focus on gas flows below hypersonic. This targeted approach provides a cohesive and rigorous examination of most practical engineering problems in this gas dynamics flow regime. The conventional one-dimensional flow approach together with the role of temperature-entropy diagrams are highlighted throughout. The authors--noted experts in the field--include a modern computational aid, illustrative charts and tables, and myriad examples of varying degrees of difficulty to aid in the understanding of the material presented. The updated edition of Fundamentals of Gas Dynamics includes new sections on the shock tube, the aerospike nozzle, and the gas dynamic laser. The book contains all equations, tables, and charts necessary to work the problems and exercises in each chapter. This book's accessible but rigorous style: Offers a comprehensively updated edition that includes new problems and examples Covers fundamentals of gas flows targeting those below hypersonic Presents the one-dimensional flow approach and highlights the role of temperature-entropy diagrams Contains new sections that examine the shock tube, the aerospike nozzle, the gas dynamic laser, and an expanded coverage of rocket propulsion Explores applications of gas dynamics to aircraft and rocket engines Includes behavioral objectives, summaries, and check tests to aid with learning Written for students in mechanical and aerospace engineering and professionals and researchers in the field, the third edition of Fundamentals of Gas Dynamics has been updated to include recent developments in the field and retains all its learning aids. The calculator for gas dynamics calculations is available at https: //www.oscarbiblarz.com/gascalculator gas dynamics calculations
Generalized Plasticity deals with the plasticity of materials and structures. It is an expansion of the "Unified Strength Theory to Plasticity Theory," leading to a unified treatment of metal plasticity and plasticity of geomaterials, generally. It includes the metal plasticity for Tresca materials, Huber-von-Mises materials and twin-shear materials and the geomaterial plasticity for Mohr-Coulomb materials, generalized twin-shear materials and the Unified Strength Theory.
Through his voluminous and in?uential writings, editorial activities, organi- tional leadership, intellectual acumen, and strong sense of history, Clifford - brose Truesdell III (1919-2000) was the main architect for the renaissance of - tional continuum mechanics since the middle of the twentieth century. The present collection of 42 essays and research papers pays tribute to this man of mathematics, science, and natural philosophy as well as to his legacy. The ?rst ?ve essays by B. D. Coleman, E. Giusti, W. Noll, J. Serrin, and D. Speiser were texts of addresses given by their authors at the Meeting in memory of Clifford Truesdell, which was held in Pisa in November 2000. In these essays the reader will ?nd personal reminiscences of Clifford Truesdell the man and of some of his activities as scientist, author, editor, historian of exact sciences, and principal founding member of the Society for Natural Philosophy. The bulk of the collection comprises 37 research papers which bear witness to the Truesdellian legacy. These papers cover a wide range of topics; what ties them together is the rational spirit. Clifford Truesdell, in his address upon receipt of a Birkhoff Prize in 1978, put the essence of modern continuum mechanics succinctly as "conceptual analysis, analysis not in the sense of the technical term but in the root meaning: logical criticism, dissection, and creative scrutiny.
It is this editor's distinct pleasure to offer to the readership the text of the lectures presented at our recent NATO Advanced Study Institute held in Cortina d'Ampezzo, Italy between August 6 and August 17, 1984. The invited lectures are printed in their entirety while the seminar contributions are presented as abstracts. Our Advanced Study Institutes were originated in 1972 and the reader, familiar with periodic phenomena, so important in Celestial Mechanics, will easily establish the fact that this Institute was our fifth one in the series. We dedicated the Institute to the subject of stability which itself is a humbling experience since it encompasses all fields of sciences and it is a basic element of human culture. The many definitions in existence and their practical applications could easily fill another volume. It is known in this field that it is easy to deliver lectures or write papers on stability as long as the definition of stability is carefully avoided. On the other hand, if one selects a definition, he might be criticized for using that definition and not another one. In this volume we carefully defined the specific concept of stability used in every lecture. If the reader wishes to introduce other definitions we feel that he should be entirely free and we encourage him to do so. It is also known that certain sta bility definitions and concepts are more applicable to certain given fields than to others."
Rigorous presentation of Mathematical Homogenization Theory is the subject of numerous publications. This book, however, is intended to fill the gap in the analytical and numerical performance of the corresponding asymptotic analysis of the static and dynamic behaviors of heterogenous systems. Numerous concrete applications to composite media, heterogeneous plates and shells are considered. A lot of details, numerical results for cell problem solutions, calculations of high-order terms of asymptotic expansions, boundary layer analysis etc., are included.
The study of sliding friction is one of the oldest problems in physics, and certainly one of the most important from a practical point of view. Low-friction surfaces are in increasingly high demand for high-tech components such as computer storage systems, miniature motors, and aerospace devices. It has been estimated that about 5% of the gross national product in the developed countries is "wasted" on friction and the related wear. In spite of this, remarkable little is understood about the fundamental, microscopic processes responsible for friction and wear. The topic of interfacial sliding has experienced a major burst of in terest and activity since 1987, much of which has developed quite independently and spontaneously. This volume contains contributions from leading scientists on fundamental aspects of sliding friction. Some problems considered are: What is the origin of stick-and-slip motion? What is the origin of the rapid processes taking place within a lub at low sliding velocities? On a metallic surface, is the rication layer electronic or phononic friction the dominating energy dissipation pro cess? What is the role (if any) of self-organized criticality in sliding friction? How thick is the water layer during sliding on ice and snow? These and other questions raised in this book are of course only part ly answered: the topic of sliding friction is still in an early state of development."
This is the third volume in a series of books on the general topics of Supers- metric Mechanics, with the ?rst and second volumes being published as Lecture Notes in Physics Vol. 698, Supersymmetric Mechanics - Vol. 1: Supersymmetry, Noncommutativity and Matrix Models (ISBN: 3-540-33313-4), and Lecture Notes in Physics Vol. 701, Supersymmetric Mechanics - Vol. 2: The Attractor Mechanism and Space Time Singularities (ISBN: 3-540-34156-0). The aim of this ongoing collection is to provide a reference corpus of suitable, introductory material to the ?eld, by gathering the signi?cantly expanded and edited versions of all tutorial lectures, given over the years at the well-established annual INFN-Laboratori Nazionali di Frascati Winter School on the Attractor Mechanism, directed by myself. The present set of notes results again from the participation and dedication of prestigious lecturers, such as Iosif Bena, Sergio Ferrara, Renata Kallosh, Per Kraus, Finn Larsen, and Boris Pioline. As usual, the lectures were subsequently carefully edited and reworked, taking into account the extensive follow-up discussions. The present volume emphasizes topics of great recent interest, namely general concepts of attractors in supersymmetric gravity and black holes.
This book offers a detailed, pedagogical introduction to general relativity. It includes a review of what may lie beyond and collects up-to-date essays on the experimental tests of this theory, including the precise timing of the double pulsar J0737-3039. Coverage also details the recent results of the Gravity Probe B mission.
Aerodynamics is a science engaged in the investigation of the motion of air and other gases and their interaction with bodies, and is one of the most important bases of the aeronautic and astronautic techniques. The continuous improvement of the configurations of the airplanes and the space vehicles aid the constant enhancement of their performances are closely related with the development of the aerodynamics. In the design of new flying vehicles the aerodynamics will play more and more important role. The undertakings of aeronautics and astronautics in our country have gained achievements of world interest, the aerodynamics community has made outstanding contributions for the development of these undertakings and the science of aerodynamics. To promote further the development of the aerodynamics, meet the challenge in the new century, summary the experience, cultivate the professional personnel and to serve better the cause of aeronautics and astronautics and the national economy, the present Series of Modern Aerodynamics is organized and published.
In these volumes, the most significant of the collected papers of the Chinese-American theoretical physicist Tsung-Dao Lee are printed. A complete list of his published papers, in order of publication, appears in the Bibliography of T.D. Lee. The papers have been arranged into ten categories, in most cases according to the subject matter. At the beginning of each of the first eight categories of papers, there is a commentary on the content and significance of all of the papers in the category. The two short final categories do not have any commentaries. The editor would like to thank Dr. Richard Friedberg for his assistance in the early stages of the editorial work on this project, as well as for writing commentaries on the papers of Categories III and IV. I would also like to thank Dr. Norman Christ for writing the commentary on the papers of Category VII. The assistance of Irene Tramm was in valuable in many aspects of preparing this collection, including locating copies of Lee's p pers. GERALD FEINBERG List of Categories of T.D. Lee's Papers Volume 1 I. Weak Interactions II. Early Papers on Astrophysics and Hydrodynamics III. Statistical Mechanics IV. Polarons and Solitons Volume 2 V. Quantum Field Theory VI. Symmetry Principles Volume 3 VII. Discrete Physics VIII. Strong Interaction Models IX. Historical Papers X. Gravity (Continuum Theory) Contents (Volume 3)* Introduction (by G. Feinberg) ............................................................ ix Bibliography of T.D. Lee ................................................................. xiii VII. Discrete Physics Commentary ................................................................ ."
Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be a cornerstone of geometrical optics. This book explains variational principles and charts their use throughout modern physics. It examines the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. The book also offers simple but rich first impressions of Einstein’s General Relativity, Feynman’s Quantum Mechanics, and more that reveal amazing interconnections between various fields of physics.
Dynamical processes in which many timescales coexist are called dispersive. The rate coefficients for dispersive processes depend on time. In the case of a chemical reaction, the time dependence of the rate coefficient, k(t), termed the specific reaction rate, is rationalized in the following way. Reactions by their very nature have to disturb reactivity distributions of the reactants in condensed media, as the more reactive species are the first ones to disappear from the system. The extent of this disturbance depends on the ratio of the rates of reactions to the rate of internal rearrangements (mixing) in the system restoring the initial distribution in reactivity of reactants. If the rates of chemical reactions exceed the rates of internal rearrangements, then the initial distributions in reactant reactivity are not preserved during the course of reactions and the specific reaction rates depend on time. Otherwise the extent of disturbance is negligible and classical kinetics, with a constant specific reaction rate, k, termed the reaction rate constant, may be valid as an approximation. In condensed media dispersive dynamical processes are endemic and this is the first monograph devoted to these processes.
|
You may like...
Advances in Computational Approaches in…
Pritam Pain, Sreerupa Dhar, …
Hardcover
R6,409
Discovery Miles 64 090
Thermal Solar Desalination - Methods and…
Vassilis Belessiotis, Soteris Kalogirou, …
Hardcover
Solid Fuels and Heavy Hydrocarbon…
Rafael Kandiyoti, Alan Herod, …
Hardcover
|