![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics > General
This volume is intended to coverthe presentstatus of the mathematicaltools used to deal with problems related to slow rare?ed ?ows. The meaning and usefulness of the subject, and the extent to which it is covered in the book, are discussed in some detail in the introduction. In short, I tried to present the basic concepts and the techniques used in probing mathematical questions and problems which arise when studying slow rare?ed ?ows in environmental sciences and micromachines. For the book to be up-to-date without being excessively large, it was necessary to omit some topics, which are treated elsewhere, as indicated in the introd- tion and, whenever the need arises, in the various chapters of this volume. Their omission does not alter the aim of the book, to provide an understanding of the essential mathematical tools required to deal with slow rare?ed ?ows and give the background for a study of the original literature. Although I have tried to give a rather complete bibliographical coverage, the choice of the topics and of the references certainly re?ects a personal bias and I apologize in advance for any omission. I wish to thank Lorenzo Valdettaro, Antonella Abb a, Silva Lorenzani and Paolo Barbante for their help with pictures and especially Professor Ching Shen for his permission to reproduce his pictures on microchannel ?ows.
This book explores two important aspects of the optimal control of oscillatory systems: the initiation of optimal oscillatory regimes and control possibilities for random disturbances. The main content of the book is based upon assertions of the optimal control theory and the disturbance theory. All theoretical propositions are illustrated by examples with exact mechanical context. An appendix covers the necessary mathematical prerequisites.
Intended for self-study, this second volume presents a systematic approach for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume. The focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, as well as active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. Its examples can be used as models for university lectures.
Explores the link between universe, space exploration, and rocketry Discusses protection of Earth from asteroids, debris, and global warming Includes basic methodology to be adopted to design rockets for various specific applications Covers use of multi-objective optimization to realize a system and differences in design philosophies for satellite launch Examines material on environment protection of Earth
An examination of systematic techniques for the design of sustainable processes and products, this book covers reducing energy consumption, preventing pollution, developing new pathways for biofuels, and producing environmentally friendly and high-quality products. It discusses innovative design approaches and technological pathways that impact energy and environmental issues of new and existing processes. Highlights include design for sustainability and energy efficiency, emerging technologies and processes for energy and the environment, design of biofuels, biological processes and biorefineries, energy systems design and alternative energy sources, multi-scale systems uncertain and complex systems, and product design.
The sine-Gordon model is a ubiquitous model of Mathematical Physics with a wide range of applications extending from coupled torsion pendula and Josephson junction arrays to gravitational and high-energy physics models. The purpose of this book is to present a summary of recent developments in this field, incorporating both introductory background material, but also with a strong view towards modern applications, recent experiments, developments regarding the existence, stability, dynamics and asymptotics of nonlinear waves that arise in the model. This book is of particular interest to a wide range of researchers in this field, but serves as an introductory text for young researchers and students interested in the topic. The book consists of well-selected thematic chapters on diverse mathematical and physical aspects of the equation carefully chosen and assigned.
This book is based on the author's 50+ years experience in the power and distribution transformer industry. The first few chapters of the book provide a step-by-step procedures of transformer design. Engineers without prior knowledge or exposure to design can follow the procedures and calculation methods to acquire reasonable proficiency necessary to designing a transformer. Although the transformer is a mature product, engineers working in the industry need to understand its fundamentals oand design to enable them to offer products to meet the challenging demands of the power system and the customer. This book can function as a useful guide for practicing engineers to undertake new designs, cost optimization, design automation etc., without the need for external help or consultancy. The book extensively covers the design processes with necessary data and calculations from a wide variety of transformers, including dry-type cast resin transformers, amorphous core transformers, earthing transformers, rectifier transformers, auto transformers, transformers for explosive atmospheres, and solid-state transformers. The other subjects covered include, carbon footprint salculation of transformers, condition monitoring of transformers and design optimization techniques. In addition to being useful for the transformer industry, this book can serve as a reference for power utility engineers, consultants, research scholars, and teaching faculty at universities.
* Offers a rigorous mathematical treatment of mechanics as a text or reference * Revisits beautiful classical material, including gyroscopes, precessions, spinning tops, effects of rotation of the Earth on gravity motions, and variational principles * Employs mathematics not only as a "unifying" language, but also to exemplify its role as a catalyst behind new concepts and discoveries
This book presents tensors and tensor analysis as primary mathematical tools for engineering and engineering science students and researchers. The discussion is based on the concepts of vectors and vector analysis in three-dimensional Euclidean space, and although it takes the subject matter to an advanced level, the book starts with elementary geometrical vector algebra so that it is suitable as a first introduction to tensors and tensor analysis. Each chapter includes a number of problems for readers to solve, and solutions are provided in an Appendix at the end of the text. Chapter 1 introduces the necessary mathematical foundations for the chapters that follow, while Chapter 2 presents the equations of motions for bodies of continuous material. Chapter 3 offers a general definition of tensors and tensor fields in three-dimensional Euclidean space. Chapter 4 discusses a new family of tensors related to the deformation of continuous material. Chapter 5 then addresses constitutive equations for elastic materials and viscous fluids, which are presented as tensor equations relating the tensor concept of stress to the tensors describing deformation, rate of deformation and rotation. Chapter 6 investigates general coordinate systems in three-dimensional Euclidean space and Chapter 7 shows how the tensor equations discussed in chapters 4 and 5 are presented in general coordinates. Chapter 8 describes surface geometry in three-dimensional Euclidean space, Chapter 9 includes the most common integral theorems in two- and three-dimensional Euclidean space applied in continuum mechanics and mathematical physics.
Whatdoasupernovaexplosioninouterspace, ?owaroundanairfoil and knocking in combustion engines have in common? The physical and chemical mechanisms as well as the sizes of these processes are quite di?erent. So are the motivations for studying them scienti?cally. The super- 8 nova is a thermo-nuclear explosion on a scale of 10 cm. Astrophysicists try to understand them in order to get insight into fundamental properties of the universe. In ?ows around airfoils of commercial airliners at the scale of 3 10 cm shock waves occur that in?uence the stability of the wings as well as fuel consumption in ?ight. This requires appropriate design of the shape and structure of airfoils by engineers. Knocking occurs in combustion, a chemical 1 process, and must be avoided since it damages motors. The scale is 10 cm and these processes must be optimized for e?ciency and environmental conside- tions. The common thread is that the underlying ?uid ?ows may at a certain scale of observation be described by basically the same type of hyperbolic s- tems of partial di?erential equations in divergence form, called conservation laws. Astrophysicists, engineers and mathematicians share a common interest in scienti?c progress on theory for these equations and the development of computational methods for solutions of the equations. Due to their wide applicability in modeling of continua, partial di?erential equationsareamajor?eldofresearchinmathematics. Asubstantialportionof mathematical research is related to the analysis and numerical approximation of solutions to such equations. Hyperbolic conservation laws in two or more spacedimensionsstillposeoneofthemainchallengestomodernmathematics
This work focuses on computational methods in continuum thermomechanics. The text is based on the author's lectures, which ensures a didactical and coherent buildup.The main emphasis is put on the presentation of ideas and qualitative considerations, illustrated by specific examples and applications. Conditions and explanations that are essential for the practical application of methods are discussed thoroughly.
The book presents an updated state-of-the-art overview of the
general aspects and practical applications of the theories of thin
structures, through the interaction of several topics, ranging from
non-linear thin-films, shells, junctions, beams of different
materials and in different contexts (elasticity, plasticity, etc.).
Advanced problems like the optimal design and the modeling of thin
films made of brittle or phase-transforming materials will be
presented as well.
This book is intended for first year physics graduate students who wish to learn about analytical mechanics. Lagrangians and Hamiltonians are extensively treated following chapters where particle motion, oscillations, coordinate systems, and rigid bodies are dealt with in far greater detail than in most undergraduate textbooks. Perturbation theory, relativistic mechanics, and two case studies of continuous systems are presented.Each subject is approached at progressively higher levels of abstraction. Lagrangians and Hamiltonians are first presented in an inductive way, leading up to general proofs. Hamiltonian mechanics is expressed in Cartan's notation not too early; there is a self-contained account of the traditional formulation.Numerous problems with detailed solutions are provided. Graduate students studying for the qualifying examination will find them very useful.
This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system). The book departs from the principle that ''dynamics is first'' and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics. Finally, it is shown that further properties that allow the explicit description of the dynamics of certain dynamical systems, like integrability and super integrability, are deeply related to the previous development and will be covered in the last part of the book. The mathematical framework used to present the previous program is kept to an elementary level throughout the text, indicating where more advanced notions will be needed to proceed further. A family of relevant examples is discussed at length and the necessary ideas from geometry are elaborated along the text. However no effort is made to present an ''all-inclusive'' introduction to differential geometry as many other books already exist on the market doing exactly that. However, the development of the previous program, considered as the posing and solution of a generalized inverse problem for geometry, leads to new ways of thinking and relating some of the most conspicuous geometrical structures appearing in Mathematical and Theoretical Physics.
Elements of Continuum Mechanics and Conservation Laws presents a
systematization of different models in mathematical physics, a
study of the structure of conservation laws, thermodynamical
identities, and connection with criteria for well-posedness of the
corresponding mathematical problems.
* New chapter specifically on electric vehicles * Increased international focus, with more examples from outside the USA * Pedagogical features including learning objectives at the start of each chapter, in-chapter questions and end-of-chapter suggested online activities * Student companion website material: multiple choice questions and homework exercises * Instructor companion website material: lecture slides, solution files for instructors; suggested questions for discussion forums to increase engagement; and activities to achieve the chapter learning objectives, including quizzes with answers, that instructors can use to assess student attainment
New edition of the popular textbook, comprehensively updated throughout and now includes a new dedicated website for gas dynamic calculations The thoroughly revised and updated third edition of Fundamentals of Gas Dynamics maintains the focus on gas flows below hypersonic. This targeted approach provides a cohesive and rigorous examination of most practical engineering problems in this gas dynamics flow regime. The conventional one-dimensional flow approach together with the role of temperature-entropy diagrams are highlighted throughout. The authors--noted experts in the field--include a modern computational aid, illustrative charts and tables, and myriad examples of varying degrees of difficulty to aid in the understanding of the material presented. The updated edition of Fundamentals of Gas Dynamics includes new sections on the shock tube, the aerospike nozzle, and the gas dynamic laser. The book contains all equations, tables, and charts necessary to work the problems and exercises in each chapter. This book's accessible but rigorous style: Offers a comprehensively updated edition that includes new problems and examples Covers fundamentals of gas flows targeting those below hypersonic Presents the one-dimensional flow approach and highlights the role of temperature-entropy diagrams Contains new sections that examine the shock tube, the aerospike nozzle, the gas dynamic laser, and an expanded coverage of rocket propulsion Explores applications of gas dynamics to aircraft and rocket engines Includes behavioral objectives, summaries, and check tests to aid with learning Written for students in mechanical and aerospace engineering and professionals and researchers in the field, the third edition of Fundamentals of Gas Dynamics has been updated to include recent developments in the field and retains all its learning aids. The calculator for gas dynamics calculations is available at https: //www.oscarbiblarz.com/gascalculator gas dynamics calculations
The volume LB IV/15 Diffusion in Gases, Liquids, and Electrolytes is divided into three subvolumes. Part A: Gases in Gases, Liquids and their Mixtures; Part B: Liquids in Liquids and Liquid Mixtures; Part C: Ions and Electrolytes in Liquids, Electrolytes and Molten Salts. This Standard Reference Book contains selected and easily retrievable data from the fields of physics and chemistry collected by acknowledged international scientists.
Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium occurs in a variety of settings in nature and technology, and has applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. This book explores the forefront of current research, describing in-depth the analytical methods that elucidate the complex evolution of nonlinear dissipative systems.
This book presents rigorous treatment of boundary value problems in nonlinear theory of shallow shells. The consideration of the problems is carried out using methods of nonlinear functional analysis.
As one of the oldest natural sciences, mechanics occupies a certain pioneering role in determining the development of exact sciences through its interaction with mathematics. As a matter of fact, there is hardly an area in mathematics that hasn't found an application of some form in mechanics. It is thus almost inevitable that theoretical methods in mechanics are highly developed and laid out on different levels of abstraction. With the spread of digital processors this goes as far as the implementation in commercial computer codes, where the user is merely con fronted on the surface with the processes that run in the background, i. e. mechan ics as such: in teaching and research, as well as in the context of industry, me chanics is much more, and must remain much more than the mere production of data with the help of a processor. Mechanics, as it is talked about here, tradition ally includes a wide spectrum, ranging from applied mechanics, analytical and technical mechanics to modeling. and experimental mechanics, as well as technical realization. It also includes the subdisciplines of rigid body mechanics, continuum mechanics, or fluid mechanics, to mention only a few. One of the fundamental and most important concepts used by nearly all natural sciences is the concept of linearization, which assumes the differentiability of mappings. As a matter of fact, all of classical mechanics is based on the avail ability of this quality." |
![]() ![]() You may like...
Big Data Management, Technologies, and…
Wen-Chen Hu, Naima Kaabouch
Hardcover
R4,931
Discovery Miles 49 310
Artificial Intelligence Applications and…
Ilias Maglogiannis, Lazaros Iliadis, …
Hardcover
R2,960
Discovery Miles 29 600
Progress in Turbulence VIII…
Ramis Oerlu, Alessandro Talamelli, …
Hardcover
R4,398
Discovery Miles 43 980
Progress in Turbulence VII - Proceedings…
Ramis Oerlu, Alessandro Talamelli, …
Hardcover
Nonlinear Approaches in Engineering…
Reza N. Jazar, Liming Dai
Hardcover
R4,682
Discovery Miles 46 820
|