|
Books > Science & Mathematics > Physics > Classical mechanics > General
Polymeric materials have been and continue to be a focus of
research in the development of materials for energy conversion,
storage and delivery applications (fuel cells, batteries,
photovoltaics, capacitors, etc.). Significant growth in this field
started in the early 1990s and has continued to grow quite
substantially since that time. Polymeric materials now have a
prominent place in energy research.
For polymers, particularly polyelectrolytes, being used in fuel
cell and battery applications, the importance of chain
microstructure, chain dynamics, and nanoscale morphology on the
overall performance characteristics of these materials cannot be
overstated. As further advancements are made in polymer chemistry,
control of nanostructure and characterization, there is a necessity
for organized forums that foster cross-fertilization of knowledge
and ideas between experts in polymer chemistry, chemical
engineering, and polymer physics. This volume is the result of such
a forum.
Most of the chapters in this book are based on a cross-section of
the oral presentations in a symposium on Polymers for Energy
Storage and Delivery held in March of 2011 as part of the 241st ACS
National Meeting & Exposition (Anaheim, CA). The book contains
17 chapters presented in two parts. Part one focuses on polymers
for battery applications and will cover theory and modeling, novel
materials, and materials characterization. Professor Janna Maranas
has provided an excellent review of the current state of
understanding in polyelectrolytes as ion conductors in batteries.
Part two will focus on polymers for fuel cells and will cover novel
materials, transport, and materials characterization with a brief
introduction into the history of polyelectrolytes for fuel cells
and the classes of materials being pursued. Realizing the common
role that nanostructure plays in both battery and fuel cell
applications, Professor Moon Jeong Park and coworkers have also
contributed a chapter demonstrating the role of nanostructured
polyelectrolyte systems in energy storage and delivery. In
addition, the editors are pleased to have a chapter-contributed by
Professor Howard Wang and staff scientists of the NIST Center for
Neutron Research-on the most state-of-art, in-situ neutron methods
for studying lithium ion batteries.
Developed for the new International A Level specification, these
new resources are specifically designed for international students,
with a strong focus on progression, recognition and transferable
skills, allowing learning in a local context to a global standard.
Recognised by universities worldwide and fully comparable to UK
reformed GCE A levels. Supports a modular approach, in line with
the specification. Appropriate international content puts learning
in a real-world context, to a global standard, making it engaging
and relevant for all learners. Reviewed by a language specialist to
ensure materials are written in a clear and accessible style. The
embedded transferable skills, needed for progression to higher
education and employment, are signposted so students understand
what skills they are developing and therefore go on to use these
skills more effectively in the future. Exam practice provides
opportunities to assess understanding and progress, so students can
make the best progress they can.
Most modern systems involve various engineering disciplines.
Mechatronic systems are designed to be dependable and efficient;
however, mechatronics engineering faces multiple challenges at the
design and exploitation stages. It is essential for engineers to be
aware of these challenges and remain up to date with the emerging
research in the mechatronics engineering field. Trends, Paradigms,
and Advances in Mechatronics Engineering presents the latest
advances and applications of mechatronics. It highlights the recent
challenges in the field and facilitates understanding of the
subject. Covering topics such as the construction industry, design
optimization, and low-cost fabrication, this premier reference
source is a crucial resource for engineers, computer scientists,
construction managers, students and educators of higher education,
librarians, researchers, and academicians.
Lectures in Physics, Volume I: Classical Mechanics in Substance
Applications comprises seven modules spread across three parts,
structured as an invitation to a discussion on various science
topics. The opening part, called a prelude, is dedicated to a
thorough description of basic mathematics required in this course
such as scalars, geometry, trigonometry, vectors, and rules of
their operations. The second part of the text is the theory of
classical mechanics focusing on proving, generalizing, and inviting
to further discussion the concepts of kinematics, dynamics and
statics, and conservation laws by examining displacement, velocity,
acceleration, jerk, force, torque, energy, and molecule kinetic
theory. The last part deals with classical mechanics applications
to substance properties. Readers explore fluids and gases, transfer
processes, and the fascinating and at times confusing world of
thermodynamics followed by a detailed description of periodic
motion. Thorough equations illustrated by figures along with
example problems provide students with ample opportunities to
discuss course topics in detail and apply what they've learned to
other courses of their major. Lectures in Physics, Volume I is the
first textbook in a two-volume series designed to help students
learn and grasp science-related key concepts and applications.
Developed for the new International A Level specification, these
new resources are specifically designed for international students,
with a strong focus on progression, recognition and transferable
skills, allowing learning in a local context to a global standard.
Recognised by universities worldwide and fully comparable to UK
reformed GCE A levels. Supports a modular approach, in line with
the specification. Appropriate international content puts learning
in a real-world context, to a global standard, making it engaging
and relevant for all learners. Reviewed by a language specialist to
ensure materials are written in a clear and accessible style. The
embedded transferable skills, needed for progression to higher
education and employment, are signposted so students understand
what skills they are developing and therefore go on to use these
skills more effectively in the future. Exam practice provides
opportunities to assess understanding and progress, so students can
make the best progress they can.
A world-recognized expert in the science of vehicle dynamics, Dr.
Thomas Gillespie has created an ideal reference book that has been
used by engineers for 30 years, ranging from an introduction to the
subject at the university level to a common sight on the desks of
engineers throughout the world. As with the original printing,
Fundamentals of Vehicle Dynamics, Revised Edition, strives to find
a middle ground by balancing the need to provide detailed
conceptual explanations of the engineering principles involved in
the dynamics of ground vehicles with equations and example problems
that clearly and concisely demonstrate how to apply such
principles. A study of this book will ensure that the reader comes
away with a solid foundation and is prepared to discuss the subject
in detail. Ideal as much for a first course in vehicle dynamics as
it is a professional reference, Fundamentals of Vehicle Dynamics,
Revised Edition, maintains the tradition of the original by being
easy to read and while receiving updates throughout in the form of
modernized graphics and improved readability.
Bioengineering is a rapidly expanding interdisciplinary field that
encompasses application engineering techniques in the field of
mechanical engineering, electrical, electronics and instrumentation
engineering, and computer science and engineering to solve the
problems of the biological world. With the advent to digital
computers and rapidly developing computational techniques, computer
simulations are widely used as a predictive tool to supplement the
experimental techniques in engineering and technology.
Computational biomechanics is a field where the movements
biological systems are assessed in the light of computer algorithms
describing solid and fluid mechanical principles. This book
outlines recent developments in the field of computational
biomechanics. It presents a series of computational techniques that
are the backbone of the field that includes finite element
analysis, multi-scale modelling, fluid-solid interaction, mesh-less
techniques and topological optimization. It also presents a series
of case studies highlighting applications of these techniques in
different biological system and different case studies detailing
the application of the principles described earlier and the
outcomes. This book gives an overview of the current trends and
future directions of research and development in the field of
computational biomechanics. Overall, this book gives insight into
the current trends of application of intelligent computational
techniques used to analyse a multitude of phenomena the field of
biomechanics. It elaborates a series of sophisticated techniques
used for computer simulation in both solid mechanics, fluid
mechanics and fluid-solid interface across different domain of
biological world and across various dimensional scales along with
relevant case studies. The book elucidates how human locomotion to
bacterial swimming, blood flow to sports science, these wide range
of phenomena can be analyzed using computational methods to
understand their inherent mechanisms of work and predict the
behavior of the system. The target audience of the book will be
post-graduate students and researchers in the field of Biomedical
Engineering. Also industry professionals in biomedical engineering
and allied disciplines including but not limited to kinesiologists
and clinicians, as well as, computer engineers and applied
mathematicians working in algorithm development in biomechanics.
It is commonly known that three or more particles interacting via a
two-body potential is an intractable problem. However, similar
systems confined to one dimension yield exactly solvable equations,
which have seeded widely pursued studies of one-dimensional n-body
problems. The interest in these investigations is justified by
their rich and quantitative insights into real-world classical and
quantum problems, birthing a field that is the subject of this
book. Spanning four bulk chapters, this book is written with the
hope that readers come to appreciate the beauty of the mathematical
results concerning the models of many-particle systems, such as the
interaction between light particles and infinitely massive
particles, as well as interacting quasiparticles. As the book
discusses several unsolved problems in the subject, it functions as
an insightful resource for researchers working in this branch of
mathematical physics.In Chapter 1, the author first introduces
readers to interesting problems in mathematical physics, with the
prime objective of finding integrals of motion for classical
many-particle systems as well as the exact solutions of the
corresponding equations of motions. For these studied systems,
their quantum mechanical analogue is then developed in Chapter 2.
In Chapter 3, the book focuses on a quintessential problem in the
quantum theory of magnetism: namely, to find all integrable
one-dimensional systems involving quasiparticles of interacting
one-half spins. Readers will study the integrable periodic chains
of interacting one-half spins and discover the integrals of motion
for such systems, as well as the eigenvectors of their
corresponding Hamiltonians. In the last chapter, readers will study
about integrable systems of quantum particles, with spin and mutual
interactions involving rational, trigonometric, or elliptic
potentials.
It was not until 1971 that the authority for defining scientific
units, the General Conference of Weights and Measures got around to
defining the unit that is the basis of chemistry (the mole, or the
quantity of something). Yet for all this tardiness in putting the
chemical sciences on a sound quantitative basis, chemistry is an
old and venerable subject and one naturally asks the question, why?
Well, the truth is that up until the mid-1920s, many physicists did
not believe in the reality of molecules. Indeed, it was not until
after the physics community had accepted Ernest Rutherford's 1913
solar-system-like model of the atom, and the quantum mechanical
model of the coupling of electron spins in atoms that physicists
started to take seriously the necessity of explaining the chemical
changes that chemists had been observing, investigating and
recording since the days of the alchemists.
This book is a short introduction to classical field theory, most
suitable for undergraduate students who have had at least
intermediate-level courses in electromagnetism and classical
mechanics. The main theme of the book is showcasing role of fields
in mediating action-at-a-distance interactions. Suitable technical
machinery is developed to explore at least some aspect of each of
the four known fundamental forces in nature. Beginning with the
physically-motivated introduction to field theory, the text covers
the relativistic formulation of electromagnetism in great detail so
that aspects of gravity and the nuclear interaction not usually
encountered at the undergraduate level can be covered by using
analogies with familiar electromagentism. Special topics such as
the behavior of gravity in extra, compactified dimensions, magnetic
monopoles and electromagnetic duality, and the Higgs mechanism are
also briefly considered.
The Outside the Research Lab series is a testament to the fact that
the physics taught to high school and university students IS used
in the real world. This book explores the physics and technology
inherent to a selection of sports which have caught the author's
attention and fascination over the years. Outside the Research Lab,
Volume 3 is a path to discovering how less commonly watched sports
use physics to optimize performance, diagnose injuries, and
increase access to more competitors. It covers Olympic and
Paralympic fencing, show jumping horses, and arguably the most
brutal of motorsports - drag racing. Stunning images throughout the
book and clear, understandable writing are supplemented by offset
detail boxes which take the physics concepts to higher levels.
Outside the Research Lab, Volume 3 is both for the general interest
reader and students in STEM. Lecturers in university physics,
materials science, engineering and other sciences will find this an
excellent basis for teaching undergraduate students the range of
applications for the physics they are learning. There is a vast
range of different areas that require expertise in physics...this
third volume of Outside the Research Lab shows a few with great
detail provided by professionals doing the work.
|
|