![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions represents the sixth and final book by the late Brian Wybourne, an accomplished pioneer in the spectroscopy of rare earth ions, and Lidia Smentek, a leading theoretical physicist in the field. The book provides a definitive and up-to-date theoretical description of spectroscopic properties of lanthanides doped in various materials. The book integrates computer-assisted calculations developed since Wybourne's classic publication on the topic. It contains useful Maple(TM) routines, discussions, and new aspects of the theory of f-electron systems. Establishing a unified basis for understanding state-of-the-art applications and techniques used in the field, the book reviews fundamentals based on Wybourne's graduate lectures, which include the theory of nuclei, the theory of angular momentum, Racah algebra, and effective tensor operators. It then describes magnetic and hyperfine interactions and their impact on the energy structure and transition amplitudes of the lanthanide ions. The text culminates with a relativistic description of "f"↔"f" electric and magnetic dipole transitions, covering sensitized luminescence and a new parametrization scheme of f-spectra. Optical Spectroscopy of Lanthanides enables scientists to construct accurate and reliable theoretical models to elucidate lanthanides and their properties. This text is ideal for exploring a range of lanthanide applications including electronic data storage, lasers, superconductors, medicine, nuclear engineering, and nanomaterials.
Metals in pharmaceuticals have played an increasingly important role in medicine over the last century, particularly in cancer therapy and diagnostic imaging methods. Medicinal Applications of Coordination Chemistry focuses on the role that transition metals play in clinical applications. Medicinal Applications of Coordination Chemistry begins with a brief historical review and an introduction to the chemistry of d- and f- block metals. Subsequent sections discuss metallodrugs for a number of different applications, the design of new drugs and the relationship between structure and function. Key sections include diagnostic applications of metal compounds in anatomical and functional imaging, and therapeutic applications of metals compounds. This book is ideal for researchers in academia and industry and comes complete with examples of real life applications.
Breakthrough research and innovative science . . . PROGRESS in Inorganic Chemistry Nowhere is creative scientific talent busier than in the world of inorganic chemistry. This fascinating series provides the field of inorganic chemistry with a forum for critical and authoritative evaluations of advances in every area of the discipline. With contributions from internationally renowned chemists, this latest volume of Progress in Inorganic Chemistry continues to report the most recent advances with an innovative, cutting-edge style. "This series is distinguished not only by its scope and breadth, but also by the depth and quality of the reviews." "[This series] has won a deservedly honored place on the bookshelf of the chemist attempting to keep afloat in the torrent of original papers on inorganic chemistry." CONTENTS OF VOLUME 49
Actinide elements and their chemistry have a significant number of applications. Bringing together contributions from the leading experts in the field, Recent Advances in Actinide Science covers six main topics: * Analysis, the environment and biotransformations * Coordination and organometallic chemistry * Heavy elements * Nuclear fuels, materials and waste forms * Separations and solution chemistry * Spectroscopy, magnetism and superconductivity Covering a wide range of research from pure academic studies to applied industrial science and technology, this book distils the knowledge and achievements gained in actinide science over the last four years. This high level book is aimed at researchers, both industrial and academic, and provides a comprehensive overview of the current status of actinide science.
Advances in Fluorine Science presents critical multidisciplinary
overviews for areas in which fluorine and fluoride compounds have a
decisive impact. The individual volumes of Advances in Fluorine
Science are thematic, addressing comprehensively both the science
and applications on topics including the Environment, Green
chemistry, Medicine, Health & Life Sciences, New Technologies
& Materials Science, Energy and the Earth Sciences.
Modern applications of nuclear chemistry concern various scientific disciplines. This new edition of Volume 2 Nuclear- and Radiochemistry: Modern Applications summarizes recent knowledge on radiation measurement and dosimetry, highsensitive, high-selective, and non-destructive analytical technologies, environmental aspects and nuclear dating, state-of-the-art research on actinides and radioelements, nuclear energy, and molecular diagnosis and patient treatment for nuclear medicine. Individual topics are presented by leading experts. This 2nd edition has updated literature references and includes new material throughout. The reader is also referred to the new edition of Volume 1 Nuclear- and Radiochemistry: Introduction.
Nuclear chemistry represents a vital fi eld of basic and applied research. This Volume 1 Nuclear- and Radiochemistry: Introduction describes the relevant parameters of stable and unstable atomic nuclei, the various modes of radioactive transformations, the corresponding types of radiation, and fi nally the mechanisms of nuclear reactions. The 2nd edition has updated the chapters throughout with additional material. The reader is also referred to the new edition of Volume 2 Nuclear- and Radiochemistry: Modern Applications.
This book describes drug metal-ion interactions in the gut and deals with the deficiency of zinc and iron and their pharmacological use. It covers anti-inflammatory activities of copper and gold complexes and considers the role of metal ions and chelating agents in anti-viral chemotherapy.
Chemistry's most significant chart, the Periodic Table, and its 118 elements, is laid bare in this lively, accessible and compelling expose. The periodic table, created in the early 1860s by Russian chemist Dmitri Mendeleev, marked one of the most extraordinary advances in modern chemistry. This basic visual aid helped scientists to gain a deeper understanding of what chemical elements really were and the role they played in everyday life. Here, in the authoritative Elementary, James Russell uses his engaging narrative to explain the elements we now know about. From learning about the creation of the first three elements, hydrogen, lithium and helium, in the big bang, through to oxygen and carbon, which sustain life on earth - along with the many weird and wonderful uses of elements as varied as fluorine, arsenic, krypton and einsteinium - even the most unscientifically minded will be enthralled by this fascinating subject. This is the story of the building blocks of the universe, and the people who identified, isolated and even created them.
High surface area, a microporous structure, and a high degree of surface reactivity make activated carbons versatile adsorbents, particularly effective in the adsorption of organic and inorganic pollutants from aqueous solutions. Activated Carbon Adsorption introduces the parameters and mechanisms involved in the activated carbon adsorption of organic and inorganic compounds. This text brings together the most significant research on surface structure and processes, adsorption theories and isotherm equations, and applications from the latest literature on carbon adsorption. The book clearly explains the surface-related interactions of activated carbons, their energetics, and the applicability of adsorption isotherm equations and their deviation from adsorption data. It then explores numerous applications in a wide range of areas, such as nuclear technology, vacuum technology, food technology, pharmaceuticals and medicine, gas storage, oil refining, and environmental remediation. Topics include: oils and fats, molecular sieves, refining of liquid fuels, pesticides, dyes, drugs, and toxins. Three chapters are dedicated to environmental applications, including the adsorption of halogenated organic compounds and the removal of hazardous gases and vapors, organo-sulphur compounds, and other inorganic compounds from wastewater and groundwater. Activated Carbon Adsorption presents a complete survey of the growing number of state-of-the-art applications supported by a compilation of the latest perspectives in research concerning carbon surfaces and their adsorption processes from aqueous solutions. Its unified approach promotes further research towards improving and developing newer activated carbon adsorbents and processes for the efficient removal of pollutants from drinking water and industrial effluents.
The International Workshop "New sources, novel phases, new
applications," the third of the series on "Oxide based materials,"
was held September 13 to 16, 2004 at Societa del Casino Sociale in
Como, Italy. The workshop brought together experimental and
theoretical scientists of different origins and expertise to
exchange information on common scientific research fields,
especially on all those materials whose features and properties
depend on the interaction between surface and ionic and/or
molecular species. Knowledge of familiar materials was compared and
experiences shared on a varied range of different materials, often
new materials, including metal oxides, zeolites and other
microporous compounds, mesoporous silicates and silica, hybrid
inorganic-organic compounds, soil aggregates, layered materials,
and bioactive glasses.
This publication presents cleaning and etching solutions, their applications, and results on inorganic materials. It is a comprehensive collection of etching and cleaning solutions in a single source. Chemical formulas are presented in one of three standard formats - general, electrolytic or ionized gas formats - to insure inclusion of all necessary operational data as shown in references that accompany each numbered formula. The book describes other applications of specific solutions, including their use on other metals or metallic compounds. Physical properties, association of natural and man-made minerals, and materials are shown in relationship to crystal structure, special processing techniques and solid state devices and assemblies fabricated. This publication also presents a number of organic materials which are widely used in handling and general processing...waxes, plastics, and lacquers for example. It is useful to individuals involved in study, development, and processing of metals and metallic compounds. It is invaluable for readers from the college level to industrial R & D and full-scale device fabrication, testing and sales. Scientific disciplines, work areas and individuals with great interest include: chemistry, physics, metallurgy, geology, solid state, ceramic and glass, research libraries, individuals dealing with chemical processing of inorganic materials, societies and schools.
"Written as a complement to the definitive work selenium in the Environment (Marcel Dekker, Inc.). Presents basic and the most recent applied research developments in selenium remediation-emphasizing field investigations as well as covering topics from analytical methods and modeling to regulatory aspects from federal and state perspectives. "
"Highlights the availability of magnesium to organisms, its uptake and transport in microorganisms and plants as well as its role in health and disease of animals and humans including its toxicology."
Volume 1 of this work presents theory and methods to study the structure of condensed matter on different time scales. The authors cover the structure analysis by X-ray diffraction methods from crystalline to amorphous materials, from static-relaxed averaged structures to short-lived electronically excited structures, including detailed descriptions of the time-resolved experimental methods. Complementary, an overview of the theoretical description of condensed matter by static and time-dependent density functional theory is given, starting from the fundamental quantities that can be obtained by these methods through to the recent challenges in the description of time dependent phenomena such as optical excitations. Contents Static structural analysis of condensed matter: from single-crystal to amorphous DFT calculations of solids in the ground state TDDFT, excitations, and spectroscopy Time-resolved structural analysis: probing condensed matter in motion Ultrafast science
Humans first used carbon as chars from firewood in ritual paintings and primitive metallurgical processes. Natural forms of carbon have been known since antiquity, yet the knowledge of the carbon element in chemistry and its technical applications on a larger scale are a relatively recent development. The industrial revolution in Europe two centuries ago led the way to the numerous applications of these graphitic forms that are still used today. Graphite and Precursors features short tutorial articles on different topics related to the science and technology of carbons intended for engineers, students of Materials Science and scientists who are seeking a fundamental understanding without "reinventing the wheel." This first volume of the World of Carbon book series focuses on graphite and its precursors, including its origin and various implications. The basic properties of hexagonal graphite are developed, and several theoretical and experimental approaches explain why this crystalline solid is fascinating in solid state physics. Also featured are the numerous applications connected to thermal, mechanical and chemical graphites, as well as their various industrial uses in polycrystalline form. Finally, carbon precursors are introduced.
Designated 'Molecule of the Year' in 1992 in recognition of its many biological roles, nitric oxide has wide significance in the world around us and the story of nitric oxide is still unfolding. This small and seemingly innocent molecule has for many years been known to play a significant role in both the creation of photochemical smogs and in the nitrogen cycle. It has an interesting chemistry as a metal ligand, and the bonding within the nitric oxide molecule has been extensively studied. More recently, the molecule has been in the spotlight for the role it plays in controlling blood flow, in the immune system and in brain activity. Life, Death and Nitric Oxide covers many of the topics relating to nitric oxide, from smog and catalytic converters to tumour growth, blood flow and Viagra, with the aim of finding out why such a simple molecule can do so much.
Water Oxidation Catalysts, Volume 74, the latest release in the Advances in Inorganic Chemistry series, presents timely and informative summaries on current progress in a variety of subject areas. This acclaimed serial features reviews written by experts in the field, serving as an indispensable reference to advanced researchers. Users will find this to be a comprehensive overview of recent findings and trends from the last decade that covers various kinds of inorganic topics, ranging from theoretical oriented supramolecular chemistry, to the quest for accurate calculations of spin states in transition metals.
Calcium and comparable cations are fast being recognised for their role as vital components of animal physiology. When trying to answer questions such as why salmon can adjust to life in fresh water as well as seawater, or why chilli peppers taste hot to humans but evoke little response from chickens, we often find the answers lie in patterns of movement of these ions and their roles in sensing, transmitting and collecting messages. Bringing together scattered literature on calcium, sodium, potassium and magnesium in biology, this book examines important biological contributions of these ions including enzyme activation, effects in all types of muscle and biomineralization. Attention is focused on: channel construction and ion movement; calcium as a second messenger and in the construction of solids and ion channelopathies, with the help of personalities such as Agatha Christie, van Gogh and Captain Cook. The Role of Calcium and Comparable Cations in Animal Behaviour will be valued by a wide-range of readers including students of bioinorganic chemistry and animal behavioural studies, teachers and other professionals in academia.
In recent years the Japanese have funded a comprehensive study of
carbon materials which incorporate other elements including boron,
nitrogen and fluorine, hence the title of the project "Carbon
Alloys." Coined in 1992, the phrase "Carbon Alloys" can be applied to
those materials mainly composed of carbon materials in
multi-component systems. The carbon atoms of each component have a
physical and/or chemical interactive relationship with other atoms
or compounds. The carbon atoms of the components may have different
hybrid bonding orbitals to create quite different carbon
components. Eiichi Yasuda and his team consider the definition of Carbon
Alloys, present the results of the Carbon Alloys projects, describe
typical Carbon Alloys and their uses, discuss recent techniques for
their characterization, and finally, illustrate potential
applications and future developments for Carbon Alloy science. The
book contains over thirty chapters on these studies from as many
researchers. The most modern of techniques, particularly in the area of
spectroscopy, were used as diagnostic tools, and many of these are
applicable to pure carbons also. Porosity in carbons received
considerable attention.
This timely publication will be welcomed by those needing access to the latest research in the profitable field of industrial mineral process chemistry. It is an up-to-date account of the performance gains achievable in the use of speciality chemicals in industrial mineral processing and products, with each chapter presenting the new and potentially valuable technology for consideration. This book presents the most recent research in this key area and is unique in its coverage. Diverse topics such as dispersants, dewatering and flocculants, are discussed, along with selective processing and biocides. Speciality Chemicals in Mineral Processing is an essential purchase for speciality chemical producers and users, particularly those in the paper, plastic, polymer, paint, rubber, adhesive and ceramic industries.
The unexpected recent discovery and synthesis of a new form of elemental carbon has initiated an abundance of papers on all aspects of the chemistry and physics of the carbon family. Carbon Molecules and Materials takes stock of the current understanding of these various solid forms and, more particularly, of the diamond, graphite and fullerenes. After a historical background on the main properties of the element and on the latest discoveries in the field of fullerene, the chapters review the chemical and physical aspects of the allotropic forms. It describes the various properties such as thermodynamic, chemical, structural, electronic, electrical, optical and magnetic, and discusses current and potential applications. Written by scientists active in physical and chemical research on the various forms of carbon and closely related fields, the book presents a wealth of information on data and results for students and researchers interested in materials science and in the applications of advanced materials.
Coordination chemistry, as we know it today, has been shaped by major figures from the past, one of whom was Joseph Chatt. Beginning with a description of Chatt's career presented by co-workers, contemporaries and students, this fascinating book then goes on to show how many of today's leading practitioners in the field, working in such diverse areas as phosphines, hydrogen complexes, transition metal complexes and nitrogen fixation, have been influenced by Chatt. The reader is then brought right up-to-date with the inclusion of some of the latest research on these topics, all of which serves to underline Chatt's continuing legacy. Intended as a permanent record of Chatt's life, work and influence, this book will be of interest to lecturers, graduate students, researchers and science historians.
This reference explores the sources, characteristics, bioeffects, and health hazards of extremely low-frequency (ELF) fields and radio frequency radiation (RFR), analyzing current research as well as the latest epidemiological studies to assess potential risks associated with exposure and to develop effective safety guidelines. Compiles reports and investigations from four decades of study on the effect of nonionizing electromagnetic fields and radiation on human health Summarizing modern engineering approaches to control exposure, Electromagnetic Fields and Radiation discusses: -EM interaction mechanisms in biological systems -Explorations into the impact of EM fields on free radicals, cells, tissues, organs, whole organisms, and the population -Regulatory standards in the United States, Canada, Europe, and Asia Pacific -Evaluation of incident fields from various EM sources -Measurement surveys for various sites including power lines, substations, mobile systems, cellular base stations, broadcast antennas, traffic radar devices, heating equipment, and other sources -Dosimetry techniques for the determination of internal EM fields -Conclusions reached by the Food and Drug Administration, World Health Organization, and other institutions |
![]() ![]() You may like...
Comprehensive Organometallic Chemistry…
Gerard Parkin, Karsten Meyer, …
Hardcover
R181,402
Discovery Miles 1 814 020
Tools of Chemistry Education Research
Diane M Bunce, Renee S. Cole
Hardcover
R5,404
Discovery Miles 54 040
Advances in Inorganic Chemistry: Recent…
Rudi van Eldik, Colin D. Hubbard
Hardcover
R6,892
Discovery Miles 68 920
Fluorine-Related Nanoscience with Energy…
Donna Nelson, Christohpher Brammer
Hardcover
R2,816
Discovery Miles 28 160
|