![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
The modernization of science and technology using nanomaterials will open a new paradigm to meet the increasing energy demand. This book provides an in-depth understanding of theoretical perspectives from molecular and atomic levels. The modern analytical techniques explored provide an understanding of the interactions of particles at interfaces. This book gives a holistic view of materials synthesis, analysis, application, and safe handling.
This is the second of two volumes that together provide an integrated picture of the Montenegrin Adriatic coast, presenting the natural components of the system as well as the chemical composition and chemical processes in the extended area. This book covers all aspects of marine chemistry such as the hydrographic and oceanographic characteristics of seawater, the toxicity of heavy metals in the marine environment, the quality of marinas and maritime areas, and the legal regime for protecting the marine environment from pollution. Given the breadth and depth of its coverage, the book offers an invaluable source of information for researchers, students and environmental managers alike.
This edited book explores the use of surfactants in upstream exploration and production (E&P). It provides a molecular, mechanistic and application-based approach to the topic, utilising contributions from the leading researchers in the field of organic surfactant chemistry and surfactant chemistry for upstream E&P. The book covers a wide range of problems in enhanced oil recovery and surfactant chemistry which have a large importance in drilling, fracking, hydrate inhibition and conformance. It begins by discussing the fundamentals of surfactants and their synthesis. It then moves on to present their applicability to a variety of situations such as gas injections, shale swelling inhibition, and acid stimulation. This book presents research in an evolving field, making it interesting to academics, postgraduate students, and experts within the field of oil and gas.
"Modern Charge-Density Analysis" focuses on state-of-the-art methods and applications of electron-density analysis. It is a field traditionally associated with understanding chemical bonding and the electrostatic properties of matter. Recently, it has also been related to predictions of properties and responses of materials (having an organic, inorganic or hybrid nature as in modern materials and bio-science, and used for functional devices or biomaterials). "Modern Charge-Density Analysis" is inherently multidisciplinary and written for chemists, physicists, crystallographers, material scientists, and biochemists alike. It serves as a useful tool for scientists already working in the field by providing them with a unified view of the multifaceted charge-density world. Additionally, this volume facilitates the understanding of scientists and PhD students planning to enter the field by acquainting them with the most significant and promising developments in this arena.
This book presents the synthetic methodologies as well as the properties and potential usage of various ruthenium-containing materials. Starting from the first examples of 'ruthenopolymers' reported in the 1970s to the 3D architectures now synthesized, these materials have shown their importance far beyond fundamental polymer science. As well as highlighting the remarkable properties and versatile applications, this book also addresses a key question related to the applications of such heavy-metal-containing materials from the perspective of achieving a sustainable future. This book is of interest to both materials scientists and chemists in academia and industry.
This book addresses the nature of the chemical bond in inorganic and coordination compounds. In particular, it explains how general symmetry rules can describe chemical bond of simple inorganic molecules. Since the complexity of studying even simple molecules requires approximate methods, this book introduces a quantum mechanical treatment taking into account the geometric peculiarities of the chemical compound. In the case of inorganic molecules, a convenient approximation comes from symmetry, which constrains both the electronic energies and the chemical bonds. The book also gives special emphasis on symmetry rules and compares the use of symmetry operators with that of Hamiltonian operators. Where possible, the reactivity of molecules is also rationalized in terms of these symmetry properties. As practical examples, electronic spectroscopy and magnetism give experimental confirmation of the predicted electronic energy levels. Adapted from university lecture course notes, this book is the ideal companion for any inorganic chemistry course dealing with group theory.
Structural, Physical, and Chemical Properties of Fluorous Compounds, by J.A. Gladysz Selective Fluoroalkylation of Organic Compounds by Tackling the "Negative Fluorine Effect", by W. Zhang, C. Ni and J. Hu Synthetic and Biological Applications of Fluorous Reagents as Phase Tags, by S. Fustero, J. L. Acena and S. Catalan Chemical Applications of Fluorous Reagents and Scavengers, by Marvin S. Yu Fluorous Methods for the Synthesis of Peptides and Oligonucleotides, by B. Miriyala Fluorous Organic Hybrid Solvents for Non-Fluorous Organic Synthesis, by I. Ryu Fluorous Catalysis: From the Origin to Recent Advances, by J.-M. Vincent Fluorous Organocatalysis, by W. Zhang Thiourea Based Fluorous Organocatalyst, by C. Cai Fluoroponytailed Crown Ethers and Quaternary Ammonium Salts as Solid-Liquid Phase Transfer Catalysts in Organic Synthesis, by G. Pozzi and R. H. Fish Fluorous Hydrogenation, by X. Zhao, D. He, L. T. Mika and I. T. Horvath Fluorous Hydrosilylation, by M. Carreira and M. Contel Fluorous Hydroformylation, by X. Zhao, D. He, L.T. Mika and I. Horvath Incorporation of Fluorous Glycosides to Cell Membrane and Saccharide Chain Elongation by Cellular Enzymes, by K. Hatanaka Teflon AF Materials, by H. Zhang and S. G. Weber Ecotoxicology of Organofluorous Compounds, by M. B. Murphy, E. I. H. Loi, K. Y. Kwok and P. K. S. Lam Biology of Fluoro-Organic Compounds, by X.-J. Zhang, T.-B. Lai and R. Y.-C. Kong
This book is devoted to the synthetic and physical chemistry of aromatic thiols and their closest derivatives, sulfides, sulfoxides, sulfones, including those substituted by various functional groups such as acyl and thioacyl, alkoxide, ester, hydroxyl and halogens. In some cases, for comparison, selenium and oxygen analogues are also detailed. The main focus of the book is on synthetic methods, both traditional and new, based on the use of transition metals as catalysts, as well as the reactivity of the compounds obtained. Its addition to the influence of conformational and electronic factors on spectral (NMR, IR, UV, NQR) and electrochemical characteristics of the compounds is presented. Finally, the book describes the application of aromatic thiols and their derivatives as drug precursors, high-tech materials, building blocks for organic synthesis, analytical reagents and additives for oils and fuels. It is a useful handbook for all those interested in organosulfur chemistry.
This book describes novel synthetic methodologies for two kinds of structurally elaborate metal complexes: a heterometallic complex and a tetrahedral chiral-at-metal complex. The book provides the tools and inspiration to chemists for development of metal complexes with wide structural diversity than had previously been possible. For each of the two topics, existing synthetic methods for similar compounds are discussed first, and then new strategies are presented, followed by the demonstration of the synthesis of novel compounds supported by experimental results. Both of the final products in this research, a Co-Ni heterometallic complex covered in the first topic and a tetrahedral chiral-at-metal complex in the second one are difficult to obtain by using common synthetic methods for thermodynamic reasons. This research achieved highly selective syntheses of these compounds using newly designed strategies that enable precise kinetic control. Such an approach will be useful for synthesizing other new metal complexes. Since the last century, organic chemistry has flourished with the development of a variety of synthetic techniques that make precise kinetic control possible. Coordination chemistry of 3d or main-group transition metals has been mainly based on simple one-step reactions that yield only thermodynamic products. The publication of this book helps pave the way to kinetically controlled precise syntheses of various metal complexes.
The book covers the chronological development of synthetic approaches to make carbon nanotube mimics. It starts with the breakthrough syntheses reported in 2008 to the most recent methods to make nanobelts and short nanotubes.
In spite of the apparent simplicity of silica's composition and structure, scientists are still investigating fundamental questions regarding the formation, constitution, and behavior of colloidal silica systems. Colloidal Silica: Fundamentals and Applications introduces new information on colloid science related to silica chemistry as well as theoretical and experimental aspects of significant areas of colloidal silica science and technology. This resource is dedicated to helping researchers find new uses of silica and answers to practical problems as its industrial use continues to grow steadily in traditional and novel areas. Written by leading silica scientists around the world, this book reflects developments in the field since silica scientist Ralph K. Iler published his authoritative book on silica chemistry in 1979. It discusses properties and methods of characterization, synthesis, and preparation of silica in terms of industrial applications. Following an analysis of the surfacechemistry of various silicas, the book explores methods for measuring particle size and useful characterization techniques for determining structure, stability, and reactivity. The authors then focus on various studies, analytical methods, and current applications involving silica gels and powders, silica coatings, colloidal silica, and sol-gel technology. Colloidal Silica: Fundamentals and Applications features up-to-date material relating to fields as diverse as catalysis, metallurgy, electronics, glass, ceramics, paper and pulp technology, optics, elastomers, food, health care, and industrial chromatography. It is ideal for scientists interested in silica chemistry and physics as well as thosenot familiar with the subject.
The Light Metals symposia at the TMS Annual Meeting & Exhibition present the most recent developments, discoveries, and practices in primary aluminum science and technology. The annual Light Metals volume has become the definitive reference in the field of aluminum production and related light metal technologies. The 2021 collection includes contributions from the following symposia: * Alumina and Bauxite * Aluminum Alloys, Processing, and Characterization * Aluminum Reduction Technology * Aluminum Reduction Technology Across the Decades: An LMD Symposium Honoring Alton T. Tabereaux, Halvor Kvande and Harald A. Oye * Cast Shop Technology * Electrode Technology for Aluminum Production
This collection brings together engineers, scientists, scholars, and entrepreneurs to present their novel and innovative contributions in the domain specific to metal-matrix composites and on aspects specific to modeling, analysis, measurements, and observations specific to microstructural advances. Topics include but are not limited to: * Metals and metal-matrix composites * Nano-metal based composites * Intermetallic-based composites Contributions in the above topics connect to applications in industry-relevant areas: automotive, energy applications, aerospace, failure analysis, biomedical and healthcare, and heavy equipment and machinery.
This book provides researchers in the fields of organic chemistry, organometallic chemistry and homogeneous catalysis with an overview of significant recent developments in the area of metal-ligand cooperativity, with a focus on pincer architectures. The various contributions highlight the widespread impact of M-L co-operativity phenomena on modern organometallic chemistry and catalyst development. The development of efficient and selective catalytic transformations relies on the understanding and fine control of the various elementary reactions that constitutes a catalytic cycle. Co-operative ligands, which actively participate in bond making and bond breaking together to the metal they support, open up new avenues in this area. In particular, buttressing a weak or reactive metal-ligand bond by flanking coordinating arms in a pincer ligand design is proving a versatile strategy to access robust metal complexes that exhibit unusual and selective reactivity patterns.
This book provides a collection of contributed chapters, delivering a comprehensive overview of topics related to the synthesis and crystal growth of nitride compounds under supercritical ammonia conditions. Focusing on key chemical and technological aspects of ammonothermal synthesis and growth of functional nitride compounds, the book also describes many innovative techniques for in-situ observation and presents new data fundamental for materials synthesis under ammonothermal conditions. With its detailed coverage of many thermodynamic and kinetics aspects, which are necessary for understanding and controlling crystal growth, this contributed volume is the ideal companion to materials chemists and engineers at any point in their journey in this rich and exciting field.
This book deals with the electron density distribution in molecules and solids as obtained experimentally by X-ray diffraction. It is a comprehensive treatment of the methods involved, and the interpretation of the experimental results in terms of chemical bonding and intermolecular interactions. Inorganic and organic solids as well as metals are covered in the chapters dealing with specific systems. Encompassing a broad interface with other physical sciences this book will appeal to researchers in crystallography and chemical physics.
The Magnesium Technology Symposium, the event on which this collection is based, is one of the largest yearly gatherings of magnesium specialists in the world. Papers represent all aspects of the field, ranging from primary production to applications to recycling. Moreover, papers explore everything from basic research findings to industrialization. Magnesium Technology 2021 is a definitive reference that covers a broad spectrum of current topics, including novel extraction techniques; primary production; alloys and their production; thermodynamics and kinetics; cast products and processing; wrought products and processing; forming, joining, and machining; corrosion and surface finishing; structural applications; degradation and biomedical applications; and several others.
Instant Notes titles focus on core information and are designed to help undergraduate students come to grips with a subject quickly and easily. Instant Notes in Inorganic Chemistry, Second Edition has been fully updated and new material added on recent developments in noble-gas chemistry and the synthesis, reactions and characterization of inorganic compounds. New chapters cover the classification of inorganic reaction types concentrating on those useful in synthesis; techniques used in characterizing compounds, including elemental analysis; spectroscopic methods (IR, NMR) and structure determination by X-ray crystallography; and the factors involved in choosing appropriate solvents for synthetic reactions. The new edition continues to provide concise, comprehensive coverage of inorganic chemistry at an undergraduate level, offering easy access to all important areas of inorganic chemistry in a format which is ideal for learning and rapid revision.
This book provides an overview of the design, synthesis, and characterization of different photoactive hybrid organic-inorganic materials, based on the combination of mainly organic molecules and inorganic nanostructures, tackling their uses in different scientific fields from photonics to biomedicine. There are many examples extensively describing how the confinement of organic compounds (i.e. chromophores, photochromic molecules or photoreactants), or other photoactive compounds (i.e.metal clusters) into several microporous systems can modulate the photophysical properties and photochemical reactions leading to interesting applications. Among (ordered)-hosts, different systems of diverse nature are widely used, such as the, the 1D- or 3D- channels of zeolitic frameworks, interlayer space of 2D-clays, the organic nanospace of curcubituril and cyclodextrins or the organo-inorganic porous crystalline MOFs systems. This volume highlights the advances of these photoactive materials and aims to be an inspiration for researchers working in materials science and photochemistry, including chemists, material engineers, physicists, biologists, and medical researchers. |
![]() ![]() You may like...
Polyoxometalate-Based Hybrids and their…
Majid M. Heravi, Masoud Mirzaei
Paperback
R4,609
Discovery Miles 46 090
Comprehensive Organometallic Chemistry…
Gerard Parkin, Karsten Meyer, …
Hardcover
R181,402
Discovery Miles 1 814 020
Fire and Polymers - Materials and…
Charles A. Wilkie, Gordon L. Nelson, …
Hardcover
R3,104
Discovery Miles 31 040
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R6,114
Discovery Miles 61 140
Tools of Chemistry Education Research
Diane M Bunce, Renee S. Cole
Hardcover
R5,404
Discovery Miles 54 040
Ionic Liquids as Green Solvents…
Robin D. Rogers, Kenneth R. Seddon
Hardcover
R2,446
Discovery Miles 24 460
|