![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
This book bridges the gap between theory and practice. It provides fundamental information on heterogeneous catalysis and the practicalities of the catalysts and processes used in producing ammonia, hydrogen and methanol via hydrocarbon steam reforming. It also covers the oxidation reactions in making formaldehyde from methanol, nitric acid from ammonia and sulphuric acid from sulphur dioxide. Designed for use in the chemical industry and by those in teaching, research and the study of industrial catalysts and catalytic processes. Students will also find this book extremely useful for obtaining practical information not available in more conventional textbooks.
This book considers nickel in the environment and in aquatic systems and outlines its role for plants. It discusses the toxicology of nickel compounds and the role of nickel in carcinogenesis, focusing on the analysis of nickel in biological materials and the related difficulties.
This book discusses current techniques and instrumentation for cluster chemistry. It addresses both the experimental and theoretical aspects of gas-phase metal cluster reactivities, especially those pertaining to pollution removal, energetic reactions and corrosion and anticorrosion. These metal cluster systems have attracted enormous interest as they display a completely new class of physical, chemical, electronic, magnetic and catalytic properties. As these properties change with size and composition, it can thus be understood how their nature evolves from atoms to bulk solids. The book offers readers a basic understanding of the structural chemistry and reactivity of metal clusters in both gas-phase and wet chemistry. Further, the lessons they learn here regarding metal cluster chemistry will prepare researchers for the study of condensed phase dynamics that pertain to wet chemical synthesis, soft-landing deposition and cluster assembly.
This book provides a fundamental understanding of the basis of the theoretical treatment of electronic properties in graphite. It illustrates the wide range of topics of interest to researchers on carbon materials and stimulates further understanding of some of the phenomena involved.
This book facilitates a wider use of nuclear magnetic resonance in studies of paramagnetic species. It summarizes studies of magnetically coupled metalloproteins, of paramagnetic heme proteins, and of metal-porphyrin-induced dipolar shifts for conformational analysis.
This volume highlights recent progress on the fundamental chemistry and mechanistic understanding of metallocofactors, with an emphasis on the major development in these areas from the perspective of bioinorganic chemistry. Metallocofactors are essential for all forms of life and include a variety of metals, such as iron, molybdenum, vanadium, and nickel. Structurally fascinating metallocofactors featuring these metals are present in many bacteria and mediate remarkable metabolic redox chemistry with small molecule substrates, including N2, CO, H2, and CO2. Current interest in understanding how these metallocofactors function at the atomic level is enormous, especially in the context of sustainably feeding and fueling our planet; if we can understand how these cofactors work, then there is the possibility to design synthetic catalysts that function similarly.
This book provides comprehensive coverage of nanocomposite materials obtained by the sol-gel method, from synthesis to applications and including design tools for combining different properties. Sol-gel nanocomposites are of great interest in meeting processing and application requirements for the development of multifunctional materials. These materials are already commercialized for a number of applications from scratch-resistant and anti-adhesive coatings to optical materials with active and passive properties. Biomedical applications, holographic recordings, fuel cells and hydrogen storage, resists and catalysts are among the potential uses. The novel mechanical, optical and electronic properties of nanocomposite materials depend not only on the individual component materials, but also on their morphology and nanoscale interfacial characteristics. Sol-gel is a highly versatile method for obtaining both the matrix and the filler of the nanocomposite and for chemically adjusting the interface to optimize structure and properties. Although nanocomposites are widely discussed in the literature, the focus has been mainly on polymer nanocomposites. This book addresses nanocomposites based on inorganic or hybrid organic-inorganic matrices, with an emphasis on the scientific principles which are the basis for nanocomposite sol-gel synthesis and applications. A didactic approach is followed, with different topics developed from a fundamental point of view together with key examples and case studies. First comprehensive treatment of nanocomposites obtained by sol-gel methods Focuses on nanocomposites with inorganic and hybrid organic-inorganic matrices Describes design tools to optimize structure and properties for various applications Covers synthesis, processing, characterization, and modeling Uses first principles to describe the influence of interfacial characteristics on materials properties Presents case studies for both films and bulk applications Provides examples of products on the market, with descriptions of the scientific principles at the base of their success Includes contributions from recognized leaders in this multidisciplinary area.
This volume is an attempt to improve the understanding of the coordination chemistry and action of the biologically important compounds, also termed antibiotics, and to stimulate further research in this area, describing the properties of the biologically important compounds.
This volume reviews the evidence for some elements substituting directly for carbon atoms in the graphite lattice. It is an invaluable resource to all carbon researchers and to those who involved with graphite materials, and serves to provoke research.
This book is wholly devoted to Ca2+ metal ion, as it is so important in regulating a wide variety of biological activities. It deals with calcium and brain proteins, the role of ca2+ in exocytosis, blood coagulation, and the regulation of the skeletal muscle contraction-relaxation cycle.
This volume provides the reader with the most up-to-date and relevant knowledge on the reactivity of metals located in zeolite materials, either in framework or extra-framework positions, and the way it is connected with the nature of the chemical environment provided by the host. Since the first report of the isomorphous substitution of titanium in the framework of zeolites giving rise to materials with unusual catalytic properties, the incorporation of many other metals have been investigated with the aim for developing catalysts with improved performance in different reactions. The continuous expansion of the field, both in the variety of metals and zeolite structures, has been accompanied by an increasing focus on the relationship between the reactivity of metal centers and their unique chemical environment. The concepts covered in this volume are of interest to people working in the field of inorganic and physical chemistry, catalysis and chemical engineering, but also for those more interested in theoretical approaches to chemical reactivity. In particular the volume is useful to postgraduate students conducting research in the design, synthesis and catalytic performance of metal-containing zeolites in both academic and application contexts.
Zaozao Qiu shows in this thesis that transition metals can mediate or catalyze the cycloaddition or coupling reactions of carboryne with alkynes or alkenes to afford benzocarboranes, alkenylcarboranes or dihydrobenzocarboranes. These results represent powerful strategies to assemble useful complex molecules from very simple precursors in a single operation. Carboranes have many applications in medicine. However, their unique structures make derivatization difficult and the limited efficient synthetic methods to obtain functional carborane materials have restricted applications of carboranes within a narrow scope. This work breaks a new ground in metal-carboryne chemistry and will have a significant impact on synthetic, cluster and materials chemistry.
Reactive and functional polymers are manufactured with the aim of improving the performance of unmodified polymers or providing functionality for different applications. These polymers are created mainly through chemical reactions, but there are other important modifications that can be carried out by physical alterations in order to obtain reactive and functional polymers. This volume presents a comprehensive analysis of these reactive and functional polymers. Reactive and Functional Polymers Volume One provides the principles and foundations for the design, development, manufacture and processing of reactive and functional polymers based primarily on biopolymers, polyesters and polyurenthanes. The text provides an in-depth review of updated sources on reactive resins and silicones. In this book, world-renowned researchers have participated, including Dr. Runcang Sun (Associate editor for the journal 'Carbohydrate Polymers'). With its comprehensive scope and up-to-date coverage of issues and trends in Reactive and Functional Polymers, this is an outstanding book for students, professors, researchers and industrialists working in the field of polymers and plastic materials.
"Metal Ions in Biological Systems" is devoted to increasing our understanding of the relationship between the chemistry of metals and life processes. The volumes reflect the interdisciplinary nature of bioinorganic chemistry and coordinate the efforts of researchers in the fields of biochemistry, inorganic chemistry, coordination chemistry, environmental chemistry, biophysics, pharmacy, and medicine. "Volume 43" focuses on the vibrant research area concerning the cycling of elements, metals, and non-metals in biology and geology; in 10 chapters this book offers an authoritative and timely account on this fascinating subject.
This book describes drug metal-ion interactions in the gut and deals with the deficiency of zinc and iron and their pharmacological use. It covers anti-inflammatory activities of copper and gold complexes and considers the role of metal ions and chelating agents in anti-viral chemotherapy.
This book provides insights into the mechanisms of primary carbonization, discusses changes in the thermal-mechanical properties of carbon/carbon composites due to stress effects. It describes factors that result in the acceleration of the graphitization process.
Reporting on advances in the field of molecular solid state chemistry, each volume focuses on selected areas and highlights methods and results in syntheses, properties and applications. The volumes in this series provide a forum for the discussion of chemical, physical, biological and crystallographic aspects of the molecular solid state. Eight chapters focus on the theoretical aspects of the reactivity of solids and the applications that are of practical importance. In a collection of reviews that highlight hot topics in the field of molecular solids, the authors of this volume emphasise the problems facing them. Contents:
This book focuses on the connection between the chemistry of metal ions and their role for life, and covers complexes with a number of amino acids with chelatable side chain donor atoms. It discusses metal ion-protein interactions and the ligating ambivalency of nucleotides.
From the viewpoint of structural chemistry, structure and bonding lie at the heart of rational syntheses that have already contributed to many signi?cant scienti?c advances in inorganic chemistry and material chemistry, and especially to the discovery of some functional materials. Naturally the ?rst step to novel functional material is "synthesis", and in many cases exploratory synthesis seems to be the onlyworkableroutetonewcompound.However,rationalsynthesiswillsurelymake property-oriented exploration more fruitful and pleasing. Successundertheguidanceofelectronicstructuralfeatures,bondinginteractions, chemical reactivity of building units, etc. has been achieved in many systems. We have presented some signi?cant advances on ?ve topics via review-type chapters that were written by ?ve of the leading authorities in their ?elds. These chapters c- cern chemical approach to new quasicrystals, discovery of complicated compounds of pnicogen, the tuning of redox levels and oligomerization of triruthenium-acetate clusters, structural modi?cation of monomeric phthalocyanines, and the controlled assembly of amino lanthanide metal-organic frameworks (MOFs). Thisvolumehasshownthatthecontrolledassemblyandmodi?cationofinorganic systems are accessible and efforts along the way will contribute greatly to the discovery of new functional materials as well as the satisfaction of the curiosity of fundamental research.
Carola Vogel's PhD thesis focuses on the synthesis, and structural and spectroscopic characterization of the first high valent iron nitride complexes. In her interdisciplinary and collaborative research Carola also describes the reactivity studies of a unique iron (V) nitride complex with water. These studies show that quantitative yields of ammonia are given at ambient conditions. High valent iron nitride and oxo species have been proposed as key intermediates in many bio-catalytic transformations, but until now these species have proven exceedingly challenging to isolate and study. Iron complexes in high oxidation states can thus serve as models for iron-containing enzymes to help us understand biological systems or aid our development of more efficient industrial catalysts.
Accurate uranium analysis, and particularly for isotope measurements, is essential in many fields, including environmental studies, geology, hydrogeology, the nuclear industry, health physics, and homeland security. Nevertheless, only a few scientific books are dedicated to uranium in general and analytical chemistry aspects in particular. Analytical Chemistry of Uranium: Environmental, Forensic, Nuclear, and Toxicological Applications covers the fascinating advances in the field of analytical chemistry of uranium. Exploring a broad range of topics, the book focuses on the analytical aspects of industrial processes that involve uranium, its presence in the environment, health and biological implications of exposure to uranium compounds, and nuclear forensics. Topics include: Examples of procedures used to characterize uranium in environmental samples of soil, sediments, vegetation, water, and air Analytical methods used to examine the rigorous specifications of uranium and its compounds deployed in the nuclear fuel cycle Health aspects of exposure to uranium and the bioassays used for exposure assessment Up-to-date analytical techniques used in nuclear forensics for safeguards in support of non-proliferation, including single particle characterization Each chapter includes an overview of the topic and several examples to demonstrate the analytical procedures. This is followed by sample preparation, separation and purification techniques where necessary. The book supplies readers with a solid understanding of the analytical chemistry approach used today for characterizing the different facets of uranium, providing a good starting point for further investigation into this important element.
The renowned Oxford Chemistry Primers series, which provides focused introductions to a range of important topics in chemistry, has been refreshed and updated to suit the needs of today's students, lecturers, and postgraduate researchers. The rigorous, yet accessible, treatment of each subject area is ideal for those wanting a primer in a given topic to prepare them for more advanced study or research. Moreover, cutting-edge examples and applications throughout the texts show the relevance of the chemistry being described to current research and industry. The learning features provided, including end-of-chapter questions and online multiple-choice questions, encourage active learning and promote understanding. Furthermore, frequent diagrams, margin notes, further reading, and glossary definitions all help to enhance a student's understanding of these essential areas of chemistry. This new and updated edition of Periodicity and the s- and p-Block Elements provides a compelling and accessible introduction to key periodic trends found within the s- and p-blocks of the periodic table and includes coverage of the elements themselves as well as the compounds they form. Additional chapters focus of acidity and basicity as well as on structure. The final chapter is entirely new to the second edition and contains a critical examination of many theories, models, and approaches to the study of the ideas explored in the book. Digital formats and resources The second edition is available for students and institutions to purchase in a variety of formats, and is supported by online resources. * The e-book offers a mobile experience and convenient access along with functionality tools, navigation features, and links that offer extra learning support: www.oxfordtextbooks.co.uk/ebooks * Online resources include multiple choice questions for students to check their understanding, and, for registered adopters, figures and tables from the book
This unique book presents an integrated approach to the chemistry of art materials, exploring the many chemical processes involved. The Chemistry and Mechanism of Art Materials: Unsuspected Properties and Outcomes engages readers with historical vignettes detailing examples of unexpected outcomes due to materials used by known artists. The book discusses artists' materials focusing on relevant chemical mechanisms which underlie the synthesis and deterioration of inorganic pigments in paintings, the ageing of the binder in oil paintings, and sulfation of wall paintings as well as the toxicology of these pigments and solvents used by artists. Mechanisms illustrate the stepwise structural transformation of a variety of art materials. Based on the author's years of experience teaching college chemistry, the approach is descriptive and non-mathematical throughout. An introductory section includes a review of basic concepts and provides concise descriptions of analytical methods used in contemporary art conservation. Additional features include: Illustrations of chemical reactivity associated with art materials Includes a review of chemical bonding principles, redox and mechanism writing Covers analytical techniques used by art conservation scientists Accessible for readers with a limited science background Provides numerous references for readers seeking additional information
The Landolt-Boernstein Volume 27 deals with the magnetic properties of non-metallic inorganic compounds based on transition elements, such as there are pnictides, chalcogenides, oxides, halides, borates, and finally phosphates and silicates, the latter presented in this subvolume I. A preliminary survey of the contents of all subvolumes that have already appeared or have been planned to appear is printed on the inside of the front cover. The silicates are very complex systems, intensively studied in literature. They cover large classes of minerals as well as synthetic samples. In analyzing their magnetic and magnetically related properties we essentially followed the classification given by the Mineral Reference Manual (E. H. Nickel, N. C. Nickols, Van Nostrand Reinhold, 1991). Individual chapters are dedicated to orthosilicates, sorosilicates, cyclosilicates, inosilicate, phyllosilicates and tectosilicates. Due to the huge amount of data these chapters had to be spread over several subvolumes I1, I2, etc. . - In each chapter the different groups of minerals and synthetic silicates were distinctly analyzed in various sections. For each group, additional silicate minerals, more recently reported, as well as synthetic samples having related compositions and/or crystal structures were also considered. The silicates included in each section were firstly tabulated, mentioning their compositions. The solid solutions between the end member compounds were also described. The space groups and lattice parameters for most silicates were tabulated. Crystal structures of representative silicates were discussed in more detail and the atomic positions were given.
All living things contain carbon in some form, as it is the primary component of macromolecules including proteins, lipids, nucleic acids (RNA and DNA), and carbohydrates. As a matter of fact, it is the backbone of all organic (chemistry) compounds forming different kinds of bonds. Carbon: The Black, the Gray and the Transparent is not a complete scientific history of the material, but a book that describes key discoveries about this old faithful element while encouraging broader perspectives and approaches to its research due to its vast applications. All allotropes of carbon are described in this book, along with their properties, uses, and methods of procurement or manufacturing. Black carbon is represented by coal, gray carbon is represented by graphite, and transparent carbon is represented by diamond. |
You may like...
Polyoxometalate-Based Hybrids and their…
Majid M. Heravi, Masoud Mirzaei
Paperback
R4,443
Discovery Miles 44 430
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R5,887
Discovery Miles 58 870
Fire and Polymers - Materials and…
Charles A. Wilkie, Gordon L. Nelson, …
Hardcover
R2,999
Discovery Miles 29 990
Comprehensive Organometallic Chemistry…
Gerard Parkin, Karsten Meyer, …
Hardcover
R174,021
Discovery Miles 1 740 210
Tools of Chemistry Education Research
Diane M Bunce, Renee S. Cole
Hardcover
R5,206
Discovery Miles 52 060
|