![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
.".". the book does an excellent job of putting together several different classes of materials. Many common points emerge, and the book may facilitate the development of hybrids in which the qualities of the "parents" are enhanced."" -Angew. Chem. Int. Ed. 2011
There has been increasing emphasis on functional metal complexes that demonstrate a wide range of physical phenomena. "Molecular Materials" represents the diversity of the area, encapsulating magnetic, optical and electrical properties, with chapters on: Metal-Based Quadratic Nonlinear Optical MaterialsPhysical Properties of MetallomesogensMolecular Magnetic MaterialsMolecular Inorganic Conductors and SuperconductorsMolecular Nanomagnets Structured to include a clear introduction, a discussion of the basic concepts and up-to-date coverage of key aspects, each chapter provides a detailed review which conveys the excitement of work in that field. Additional volumes in the Inorganic Materials Series: Low-Dimensional Solids - Molecular Materials - Porous Materials - Energy Materials
This book provides insights into the mechanisms of primary carbonization, discusses changes in the thermal-mechanical properties of carbon/carbon composites due to stress effects. It describes factors that result in the acceleration of the graphitization process.
This book focuses on the connection between the chemistry of metal ions and their role for life, and covers complexes with a number of amino acids with chelatable side chain donor atoms. It discusses metal ion-protein interactions and the ligating ambivalency of nucleotides.
Reporting on advances in the field of molecular solid state chemistry, each volume focuses on selected areas and highlights methods and results in syntheses, properties and applications. The volumes in this series provide a forum for the discussion of chemical, physical, biological and crystallographic aspects of the molecular solid state. Eight chapters focus on the theoretical aspects of the reactivity of solids and the applications that are of practical importance. In a collection of reviews that highlight hot topics in the field of molecular solids, the authors of this volume emphasise the problems facing them. Contents:
From the viewpoint of structural chemistry, structure and bonding lie at the heart of rational syntheses that have already contributed to many signi?cant scienti?c advances in inorganic chemistry and material chemistry, and especially to the discovery of some functional materials. Naturally the ?rst step to novel functional material is "synthesis", and in many cases exploratory synthesis seems to be the onlyworkableroutetonewcompound.However,rationalsynthesiswillsurelymake property-oriented exploration more fruitful and pleasing. Successundertheguidanceofelectronicstructuralfeatures,bondinginteractions, chemical reactivity of building units, etc. has been achieved in many systems. We have presented some signi?cant advances on ?ve topics via review-type chapters that were written by ?ve of the leading authorities in their ?elds. These chapters c- cern chemical approach to new quasicrystals, discovery of complicated compounds of pnicogen, the tuning of redox levels and oligomerization of triruthenium-acetate clusters, structural modi?cation of monomeric phthalocyanines, and the controlled assembly of amino lanthanide metal-organic frameworks (MOFs). Thisvolumehasshownthatthecontrolledassemblyandmodi?cationofinorganic systems are accessible and efforts along the way will contribute greatly to the discovery of new functional materials as well as the satisfaction of the curiosity of fundamental research.
Carola Vogel's PhD thesis focuses on the synthesis, and structural and spectroscopic characterization of the first high valent iron nitride complexes. In her interdisciplinary and collaborative research Carola also describes the reactivity studies of a unique iron (V) nitride complex with water. These studies show that quantitative yields of ammonia are given at ambient conditions. High valent iron nitride and oxo species have been proposed as key intermediates in many bio-catalytic transformations, but until now these species have proven exceedingly challenging to isolate and study. Iron complexes in high oxidation states can thus serve as models for iron-containing enzymes to help us understand biological systems or aid our development of more efficient industrial catalysts.
Accurate uranium analysis, and particularly for isotope measurements, is essential in many fields, including environmental studies, geology, hydrogeology, the nuclear industry, health physics, and homeland security. Nevertheless, only a few scientific books are dedicated to uranium in general and analytical chemistry aspects in particular. Analytical Chemistry of Uranium: Environmental, Forensic, Nuclear, and Toxicological Applications covers the fascinating advances in the field of analytical chemistry of uranium. Exploring a broad range of topics, the book focuses on the analytical aspects of industrial processes that involve uranium, its presence in the environment, health and biological implications of exposure to uranium compounds, and nuclear forensics. Topics include: Examples of procedures used to characterize uranium in environmental samples of soil, sediments, vegetation, water, and air Analytical methods used to examine the rigorous specifications of uranium and its compounds deployed in the nuclear fuel cycle Health aspects of exposure to uranium and the bioassays used for exposure assessment Up-to-date analytical techniques used in nuclear forensics for safeguards in support of non-proliferation, including single particle characterization Each chapter includes an overview of the topic and several examples to demonstrate the analytical procedures. This is followed by sample preparation, separation and purification techniques where necessary. The book supplies readers with a solid understanding of the analytical chemistry approach used today for characterizing the different facets of uranium, providing a good starting point for further investigation into this important element.
This unique book presents an integrated approach to the chemistry of art materials, exploring the many chemical processes involved. The Chemistry and Mechanism of Art Materials: Unsuspected Properties and Outcomes engages readers with historical vignettes detailing examples of unexpected outcomes due to materials used by known artists. The book discusses artists' materials focusing on relevant chemical mechanisms which underlie the synthesis and deterioration of inorganic pigments in paintings, the ageing of the binder in oil paintings, and sulfation of wall paintings as well as the toxicology of these pigments and solvents used by artists. Mechanisms illustrate the stepwise structural transformation of a variety of art materials. Based on the author's years of experience teaching college chemistry, the approach is descriptive and non-mathematical throughout. An introductory section includes a review of basic concepts and provides concise descriptions of analytical methods used in contemporary art conservation. Additional features include: Illustrations of chemical reactivity associated with art materials Includes a review of chemical bonding principles, redox and mechanism writing Covers analytical techniques used by art conservation scientists Accessible for readers with a limited science background Provides numerous references for readers seeking additional information
The renowned Oxford Chemistry Primers series, which provides focused introductions to a range of important topics in chemistry, has been refreshed and updated to suit the needs of today's students, lecturers, and postgraduate researchers. The rigorous, yet accessible, treatment of each subject area is ideal for those wanting a primer in a given topic to prepare them for more advanced study or research. Moreover, cutting-edge examples and applications throughout the texts show the relevance of the chemistry being described to current research and industry. The learning features provided, including end-of-chapter questions and online multiple-choice questions, encourage active learning and promote understanding. Furthermore, frequent diagrams, margin notes, further reading, and glossary definitions all help to enhance a student's understanding of these essential areas of chemistry. This new and updated edition of Periodicity and the s- and p-Block Elements provides a compelling and accessible introduction to key periodic trends found within the s- and p-blocks of the periodic table and includes coverage of the elements themselves as well as the compounds they form. Additional chapters focus of acidity and basicity as well as on structure. The final chapter is entirely new to the second edition and contains a critical examination of many theories, models, and approaches to the study of the ideas explored in the book. Digital formats and resources The second edition is available for students and institutions to purchase in a variety of formats, and is supported by online resources. * The e-book offers a mobile experience and convenient access along with functionality tools, navigation features, and links that offer extra learning support: www.oxfordtextbooks.co.uk/ebooks * Online resources include multiple choice questions for students to check their understanding, and, for registered adopters, figures and tables from the book
All living things contain carbon in some form, as it is the primary component of macromolecules including proteins, lipids, nucleic acids (RNA and DNA), and carbohydrates. As a matter of fact, it is the backbone of all organic (chemistry) compounds forming different kinds of bonds. Carbon: The Black, the Gray and the Transparent is not a complete scientific history of the material, but a book that describes key discoveries about this old faithful element while encouraging broader perspectives and approaches to its research due to its vast applications. All allotropes of carbon are described in this book, along with their properties, uses, and methods of procurement or manufacturing. Black carbon is represented by coal, gray carbon is represented by graphite, and transparent carbon is represented by diamond.
The first chapter describes the manifold ways in which the latent functionality embedded in the humble heterocycle furan can be revealed by various oxidative processes.The second chapter details the fascinating cycloaddition and electrocyclization chemistry of unsaturated ketenes. The third chapter chronicles the development of a remarkable organometallic reaction of unactivated alkenes and alkynes, namely carbozincation.
The Landolt-Boernstein Volume 27 deals with the magnetic properties of non-metallic inorganic compounds based on transition elements, such as there are pnictides, chalcogenides, oxides, halides, borates, and finally phosphates and silicates, the latter presented in this subvolume I. A preliminary survey of the contents of all subvolumes that have already appeared or have been planned to appear is printed on the inside of the front cover. The silicates are very complex systems, intensively studied in literature. They cover large classes of minerals as well as synthetic samples. In analyzing their magnetic and magnetically related properties we essentially followed the classification given by the Mineral Reference Manual (E. H. Nickel, N. C. Nickols, Van Nostrand Reinhold, 1991). Individual chapters are dedicated to orthosilicates, sorosilicates, cyclosilicates, inosilicate, phyllosilicates and tectosilicates. Due to the huge amount of data these chapters had to be spread over several subvolumes I1, I2, etc. . - In each chapter the different groups of minerals and synthetic silicates were distinctly analyzed in various sections. For each group, additional silicate minerals, more recently reported, as well as synthetic samples having related compositions and/or crystal structures were also considered. The silicates included in each section were firstly tabulated, mentioning their compositions. The solid solutions between the end member compounds were also described. The space groups and lattice parameters for most silicates were tabulated. Crystal structures of representative silicates were discussed in more detail and the atomic positions were given.
A first-level text stressing chemistry of natural and polluted water and its application to waste-water treatment. Discusses principles of chemical kinetics, dilute solution equilibria, effects of temperature and ionic strength, and thermodynamics in relation to water chemistry. Strong emphasis given to graphical procedures. Contains numerous example problems.
One major goal of the World Materials Research Institute Forum - WMRIF is to promote young scientists in the field of materials science and engineering. To enhance the international knowledge exchange between young postdoctoral scientists all over the world, WMRIF meanwhile regularly organizes joint workshops among the member institutes. These workshops also represent an increasingly appreciated platform to get known to each other and to build co-operations. For such workshops, various topics are selected, pointing to future perspectives and challenges in the field of Materials Science and Engineering. This time, the presentations of the workshop focused on the four subjects Challenges in conclusive, realistic and system oriented materials testing Materials challenges for water supply Materials challenges in the extraction and recovery of scarce elements and minerals Materials challenges for nuclear fission and fusion. This book comprises the peer-reviewed contributions during the 2nd International Workshop for Young Materials Scientists at BAM Federal Institute for Materials Research and Testing, Berlin, Germany. It also provides a very informative overview of recent results for all materials scientists.
The authors of this volume concentrate on the recent progress of novel polyoxometalate (POM) syntheses, as well as advances made in catalytic, electrochemical, and sensing systems. The state-of-the-art techniques such as flow system and gel-electrophoresis for the discovery of POMs are covered with a detailed discussion. Of particular importance, the application of POM-based materials in photo-sensing, heterogeneous catalysis, energy conservation and storage, and gas separation is reviewed. Over the past few years, POM chemistry has witnessed a remarkable progress with more than 1500 papers published each year. Due to their intrinsic structural features, POMs are considered as versatile building blocks for the construction of sophisticated complex assemblies and advanced multi-functional materials. Various strategies, methods, and techniques have been adopted to develop POM-based materials with intriguing properties and excellent performance. All the contributors to this volume are young, vibrant chemists in this research field and all the works are carefully collected from the authors' years of experience. This volume serves as an essential reference for every POM chemist and is of great interest to new researchers who wish to learn more about this area.
Pink warships that vanish at dusk, urinary maladies of an emperor, and a gold test for cocaine - behold the chemistry of metal ions as never before. In this book you will learn about the sarcophagus molecule, the Chen-Kao test, and how murderers can be caught blue-handed with the wonders of glowing luminol. You will also meet the hidden chemistry of metal ions in everyday life, from the clever modern devices that measure blood-sugar levels, to the leather on your shoes and chewing gum stuck to their soles. Expect to encounter a fair share of heroes and villains, real and fictional, scientist and layperson. Such characters include an ex-MI5 employee running a hospital ward in London amid falling German V1 rockets, a notorious racing cyclist, a proud butler and the lady who first proposed nuclear fission (it's not who you think it is). With engaging, humorous and intelligent prose, the reader will discover the fascinating back-stories of chemical discoveries and inventions where metal ions have played a major role. Featuring a foreword by popular science communicator Dr Raychelle Burks of St. Edward's University, Texas.
Modern Synthetic and Application Aspects of Polysilanes: An
Underestimated Class of Materials?, by A. Feigl, A. Bockholt, J.
Weis, and B. Rieger;
Fluoropolymers are unique materials. Since the middle of the twentieth century fluropolymers have been used in applications where a wide temperature range, a high resistance to aggressive media, excellent tribological characteristics, and specific low adhesion are required. Today, researchers turn to fluoropolymers to solve new challenges and to develop materials with previously unattainable properties. Fascinating Fluoropolymers and Their Applications covers recent developments of fluoropolymer applications in energy, optical fibers, blood substitutes, textile coatings, membranes and other areas, written by experts in these fields. This volume in the Progress in Fluorine Science series is ideal for researchers and engineers who want to learn about the technology and applications of these special polymers, as well as industrial manufacturers who are interested in achieving new product characteristics in their respective industries.
The term "heavy metals" is used as a group name of toxic metals and metalloids (semimetals) causing contaminations and ecotoxicity. In strict chemical sense the density of heavy metals is higher than 5 g/cm3. From biological point of view as microelements they can be divided into two major groups. a. For their physiological function organisms and cells require essential microelements such as iron, chromium (III), cobalt, copper, manganese, molidenium, zinc. b. The other group of heavy metals is toxic to the health or environment. Of highest concern are the emissions of As, Cd, Co, Cu, Hg, Mn, Ni, Pb, Sn, Tl. The toxicity of heavy metals is well known at organizational level, while less attention has been paid to their cellular effects. This book describes the toxicity of heavy metals on microorganisms, yeast, plant and animal cells. Other chapters of the book deal with their genotoxic, mutagenic and carcinogenic effects. The toxicity of several metals touch upon the aspects of environmental hazard, ecosystems and human health. Among the cellular responses of heavy metals irregularities in cellular mechanisms such as gene expression, protein folding, stress signaling pathways are among the most important ones. The final chapters deal with biosensors and removal of heavy metals. As everybody is eating, drinking and exposed to heavy metals on a daily basis, the spirit of the book will attract a wide audience.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students.
concentrates on teaching techniques using as much theory as needed.application of the techniques to many problems of materials characterization. Mossbauer spectroscopy is a profound analytical method which has nevertheless continued to develop. The authors now present a state-of-the art book which consists of two parts. The first part details the fundamentals of Mossbauer spectroscopy and is based on a book published in 1978 in the Springer series 'Inorganic Chemistry Concepts' by P. Gutlich, R. Link and A.X. Trautwein. The second part covers useful practical aspects of measurements, and the application of the techniques to many problems of materials characterization. The update includes the use of synchroton radiation and many instructive and illustrative examples in fields such as solid state chemistry, biology and physics, materials and the geosciences, as well as industrial applications. Special chapters on magnetic relaxation phenomena (S. Morup) and computation of hyperfine interaction parameters (F. Neese) are also included. The book concentrates on teaching the technique using theory as much as needed and as little as possible. The reader will learn the fundamentals of the technique and how to apply it to many problems of materials characterization. Transition metal chemistry, studied on the basis of the most widely used Mossbauer isotopes, will be in the foreground.
Organophosphorus Chemistry presents a groundbreaking resource in this branch of organic chemistry that demonstrates how phosphorus-containing compounds can be manipulated in a variety of organic reactions. The authors give an overview of the newest trends and synthesis strategies, introduce bioactive and environmentally friendly organophosphorus compounds and show their importance in mainstream organic chemistry.
Fluoropolymers are very unique materials. Since the middle of the twentieth century fluoropolymers have been used in applications where a wide temperature range, a high resistance to aggressive media, excellent tribological characteristics, and specific low adhesion are required. Today, researchers turn to fluoropolymers to solve new challenges and to develop materials with previously unattainable properties. Opportunities for Fluoropolymers: Synthesis, Characterization, Processing, Simulation and Recycling covers recent developments in fluoropolymers, including synthesis of new copolymers, strategies for radical polymerization of fluoromonomers (conventional or controlled; RDRP), and the modification of fluoropolymers to achieve desired material characteristics. This volume in the Progress in Fluorine Science series is ideal for researchers and engineers who want to learn about the synthetic strategies, properties, and recycling of these special polymers, as well as industrial manufacturers who are interested in achieving new product characteristics in their respective industries.
Functional, flexible and lightweight products are in high demand for modern technologies ranging from microelectronics to energy storage devices. The majority of polymers are thermal and electrical insulators, which hinder their use in these applications. The conductivity of polymers can be significantly enhanced by the incorporation of conducting inorganic nanoparticles. However, this relies not only on the structure and function of the inorganic particles, but is highly determined by the morphology and dispersion of the nanoparticles, interfacial interactions and fabrication technologies of the composites. This book highlights the synthesis, chemistry and applications of two-dimensional (2D) inorganic nanoplatelets in polymer nanocomposites. Chapters cover technical challenges, such as surface functionalisation, compatibilization, interfacial interaction, dispersion, and manufacturing technologies of the polymer nanocomposites. The book also discusses the applications of these polymer nanocomposites in electronics and energy storage. With contributions from global experts, the book provides a much-needed overview of the field, giving advanced undergraduates, postgraduates and other researchers with a convenient introduction to the topic. |
You may like...
Modeling and Control of Static…
Arezki Fekik, Nacereddine Benamrouche
Hardcover
R6,170
Discovery Miles 61 700
The Reading Zone, 2nd Edition
Nancie Atwell, Anne Atwell Merkel
Paperback
Paleomagnetism, Volume 73 - Continents…
Michael W. McElhinny, Phillip L. McFadden
Hardcover
R1,409
Discovery Miles 14 090
|