![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
Advanced Inorganic Chemistry: Applications in Everyday Life connects key topics on the subject with actual experiences in nature and everyday life. Differing from other foundational texts with this emphasis on applications and examples, the text uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of attractions, leading to reactivity between molecules of different shapes. From this foundation, the text explores more advanced topics, such as: Ligands and Ligand Substitution Processes with an emphasis on Square-Planar Substitution and Octahedral Substitution Reactions in Inorganic Chemistry and Transition Metal Complexes, with a particular focus on Crystal-Field and Ligand-Field Theories, Electronic States and Spectra and Organometallic, Bioinorganic Compounds, including Carboranes and Metallacarboranes and their applications in Catalysis, Medicine and Pollution Control. Throughout the book, illustrative examples bring inorganic chemistry to life. For instance, biochemists and students will be interested in how coordination chemistry between the transition metals and the ligands has a direct correlation with cyanide or carbon monoxide poisoning (strong-field Cyanide or CO ligand versus weak-field Oxygen molecule).
This book consists of chapters written by international experts on various aspects of single molecule toroics (SMTs).The chapters cover a broad range of relevant topics and highlight the latest advances performed in the field. An up-to-date overview of the emerging SMT architectures is presented while particular attention is given to not only the magnetism and relaxation effects involved but also to the respective applications in advanced electronics and memory devices. The role that lanthanides play -especially that of dysprosium- is discussed, while a thorough analysis using theoretical/ab initio calculations is provided. Since SMTs have grown out of single molecule magnetism (SMM), it is an expanding and topical subject and the present book will engender excitement and interest amongst chemists, physicists, theoreticians and materials scientists. The volume will be of great interest to researchers and graduates working on this topic and particularly those involved in lanthanide chemistry, magnetism and theory.
CRC Handbook of Chromatography: Carbohydrates, Volume II updates the first volume, continuing coverage of literature published from 1979 to 1989. Tabulated for easy reference and thoroughly documented, it presents the comprehensive data for all chromatographic techniques applicable to carbohydrates. It features glycoproteins, proteoglycans, and glycolipids, as well as mono-, oligo-, and polysaccharides. This important text emphasizes novel chromatographic methods. Highlights of this superb work include the diversity of HPLC methods applicable to carbohydrates, and the use of some new techniques, including supercritical fluid chromatography and ion chromatography in carbohydrate analysis. Readers discover the latest detection methods, degradative processes, and derivatization techniques. Detailed chapters cover topics such as spectroscopic techniques, electrochemistry, and gas chromatography. This easy-to-use volume provides an excellent working manual and reference book for researchers in the fields of carbohydrate chemistry and biochemistry. CRC Handbook of Chromatography, Carbohydrates: Volume II is an absolute must for all analysts working for industries concerned with carbohydrates.
Encapsulated Catalysts provides valuable information for chemists, chemical engineers, and materials scientists in this promising area. The book describes many kinds of encapsulated catalysts and their applications in chemistry, including organic, inorganic, hybrid, and biological systems. Unlike other works, which discuss traditional supports, this useful resource uniquely focuses on extremely important topics, such as the encapsulation effects on reactivity and selectivity, the difficulty of their separation from reaction mixture, and/or their sensitivity to reaction conditions, and the limit of their industrial applications. In addition, the book covers the immobilization of homogenous catalysts on inorganic or organic supports and how it enables the separation of homogenous catalysts, as well as the protection or reuse of catalysts.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Inorganic chemistry continues to generate much current interest due to its array of applications, ranging from materials to biology and medicine. Techniques in Inorganic Chemistry assembles a collection of articles from international experts who describe modern methods used by research students and chemists for studying the properties and structures of inorganic chemicals. Crystallography and diffraction methods The book begins by examining developments in small-molecule x-ray crystallography. It identifies some of the major advances, discusses current attitudes toward crystallography and its uses, and considers challenges and future prospects. It then examines how ab initio x-ray powder diffraction (XRPD) methods are used to determine structure, with discussions on metal pyrazolates, metal imidazolates, and metal pyrimidinolates. This is followed by a description of single crystal neutron diffraction, a powerful structural technique. The text highlights what can presently be achieved in neutron diffraction and discusses future applications of neutron scattering. Quantum chemistry Reflecting the popularity of density functional calculations, the book includes a chapter that focuses on quantum chemistry. It examines the latest computational techniques and describes how these techniques can be applied to solve a wide range of real-world problems encountered in the realm of inorganic chemistry and particularly in transition metal chemistry. It also explains the intelligent use of quantum chemical methods for the determination of molecular structure, reactivity, and spectra of coordination and organometallic compounds. Spectroscopy Lastly, the text explores important spectroscopic approaches. It first describes intermolecular nuclear Overhauser effect (NOE) NMR experiments and diffusion experiments, offering examples that demonstrate theoretical aspects of the methodology. The final chapter summarizes recent experimental and theoretical work on pressure effects on the d-d and luminescence spectra of transition metal complexes. Derived from select articles in Comments on Inorganic Chemistry, this volume provides a solid background in the array of techniques available in the researcher's toolkit.
Metallic systems are ubiquitous in daily life. They play key roles, for example, in the chemistry of many biomolecules, ionic solutions, nanoparticles, and catalytic processes. They may be in solid, liquid, or gaseous form. The interactions of other molecules with metal surfaces are of considerable importance. Each of these topics is addressed in Metallic Systems. As we have entered the age where theoretical approaches are sufficiently mature to complement and guide experiments in many areas, an understanding of the theoretical tools and approaches to studying metallic systems is essential. Metallic Systems is concerned with enhancing our understanding of the diverse chemistry of metals and metal-containing systems and the applicability of modern quantum chemistry methodologies to study them. Metallic Systems presents brief overviews of most of the popular approaches to quantum chemical treatments and computations of chemical systems that include metals. Attention is given to the potentialities and limitations of first principles Density Functional Theory and dynamics methods (e.g. QM/MM approaches). The book emphasizes the importance of using methods that take into account crucial physical features such as explicit solvation, temperature and dynamics of metal-containing systems. It emphasizes first principles calculations in providing reliable and detailed information concerning electronic structures, mechanisms, and reaction energetics. Accessible to newcomers to the field, Metallic Systems overviews theory underpinning current methodologies. It presents a practical set of modalities for studying metallic systems, assesses current technological barriers, and examines future challenges and topics of exploration.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer for all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink.
This monograph is intended to provide a systematic presentation of theories concerning the adsorption of metal ions from aqueous solutions onto surfaces of natural and synthetic substances and to outline methods and procedures to estimate the extent and progress ofadsorption. As heavy metals and the problems associated with their transport and distribution are of serious concern to human health and the environment, the materials presented in this volume have both theoretical and practical significance. In writing this monograph, one ofour goals was to prepare a book useful to environmental workers and practicing engineers. For this reason, our presentation relies heavily on concepts commonly used in the environmental engineering literature. In fact, the volume was prepared for readers with a basic understanding of environmental engineering principles and some knowledge of adsorption processes. No prior familiarity with the ionic solute adsorption at solid-solution interfaces is assumed. Instead, introduction of the necessary background information was included. Generally speaking, metal ion adsorption may be studied in terms of three distinct but interrelated phenomena: surface ionization, complex formation, and the formation and presence of an electrostatic double layer adjacent to adsorbent surfaces. Analyses of these phenomena with various degrees of sophistication are xviii ADSORPTION OF METAL IONS FROM AQUEOUS SOLUTIONS presented, and their various combinations yield different models that describe metal ion adsorption.
In this volume the authors promote, endorse and stimulate research in the vibrant field of biological inorganic chemistry. They provide an overview of metallodrugs which have been rationally designed to target specific biomolecules in the human body with a view to generating targeted drugs or prodrugs with widespread biomedical applications. The volume focuses on recent trends and advances in relation to targeted metallodrugs as anti-cancer, anti-microbial and anti-viral agents with an emphasis on their design, development and mode of action. It also include recent advances in the use of nanoparticles and nanoclusters as important chaperones to deliver metallodrugs to their sites of action.
There has been enormous progress in our understanding of molybdenum and tungsten enzymes and relevant inorganic complexes of molybdenum and tungsten over the past twenty years. This set of three books provides a timely and comprehensive overview of the field and documents the latest research. Building on the first and second volumes that focussed on biochemistry and bioinorganic chemistry aspects, the third volume focusses on spectroscopic and computational methods that have been applied to both enzymes and model compounds. A particular emphasis is placed on how these important studies have been used to reveal critical components of enzyme mechanisms. This text will be a valuable reference to workers both inside and outside the field, including graduate students and young investigators interested in developing new research programs in this area.
This revised edition has been updated to meet the minimum requirements of the new Singapore GCE A level syllabus that would be implemented in the year 2016. Nevertheless, this book is also highly relevant to students who are studying chemistry for other examination boards. In addition, the authors have also included more Q&A to help students better understand and appreciate the chemical concepts that they are mastering.
This monograph covers new variational and projection methods to study the dynamics within solid structures. To cope with the underlying initial-boundary value problems, the method of integrodifferential relations is employed. Applications and examples in physics, mechanics and control engineering range from natural vibrations or forced motions of elastic and viscoelastic bodies to heat and mass transfer processes. Contents Generalized formulations of parabolic and hyperbolic problems Variational principles in linear elasticity Variational statements in structural mechanics Ritz method for initial-boundary value problems Variational and projection techniques with semi-discretization Integrodifferential approach to eigenvalue problems Spatial vibrations of elastic beams with convex cross-sections Double minimization in optimal control problems Semi-discrete approximations in inverse dynamic problems Modeling and control in mechatronics
Subvolume 27I compiles the magnetic properties of silicates and phosphates; the present subvolume 27I5 deals with phyllosilicates. Subvolume 27I5 is presented in two parts: part 27I5a discusses gillespites, apophyllites, natrolites, micas, smectites and related silicates. The book discusses crystal structure and gives atomic positions. Beyond magnetic properties, the book reviews results of neutron diffraction studies, nuclear gamma resonance, nuclear magnetic resonance, X-ray absorption spectroscopy, transport properties, dielectric and optical data.
Presents the latest developments on the interaction of metal complexes with nucleic acids, the building blocks of life. Bioinorganic chemistry is a highly interdisciplinary area of research and is of great interest to scientists working in the fields of coordination chemistry, biochemistry, supramolecular chemistry, nanotechnology, computational chemistry, and inorganic chemistry in general. Includes the latest research in DNA recognition by supramolecular metal complexes. Describes the applications of this exciting area of research in metal-nucleic acid chemistry.
Coordination compounds have been well-known for their wide variety of applications for over a century, as well as enhancing the researcher's interest and concern in evaluating their action mechanism. It is certainly one of the most intensely discussed research topics. Coordination compounds involve different metal-ion-ligand phenomenon. The involved metal ions play a significant role in structural association and functioning of several processes in the genetic and metabolism system. In recent years, Schiff base ligands have gained significant interest and received a keen interest of many researchers. Schiff's base ligands have been recognized to hold a wide variety of biological and medicinal activities due to the presence of donor atoms. They have proved exceptional pharmalogical actions such as antimicrobial, anti-tuberclosis, antiplatelet, antidiabetic, antiarthritis, antioxidant, anti-inflammatory, anticancer, antiviral, antimalarial, and analgesic. These biologically active Schiff base ligands have also been shown to inhibit enzyme mobilization and, when bound to a metal ion, exhibit enhanced biological activity, making them useful in a number of fields. As a result, metal complexes of Schiff base ligands are gaining popularity due to their unique properties and functionalities. Schiff base complex-based research for educational and industrial purposes is booming, and the number of publications is gradually increasing. Despite these interests, there is currently no detailed book on Schiff base metal complexes that covers the structures, biological activities, and other non-biological perspectives. This book delves into the structures of Schiff base metal complexes, which are critical in assessing the biological viability of any complex. It also highlights their biological significance in pharma and drug discovery like antibacterial, antifungal, anticancer, anti-inflammatory, anti-arthritis, anti-diabetic, antioxidants, anti-proliferative, antitumor, anticancer, antiviral. The fundamentals of metal complexes are described, as well as an up-to-date outline of developments in synthesis, characterization methods, properties- chemical, thermal, optical, structural, and applications. This book also discusses the other applications of Schiff base metal complexes: as sensor (luminescent, electrochemical, and biosensor), as pigments in dying and paint industries, as photocatalyst to improve the degradation rate. Features : This book would be useful for academia, researchers and engineers working in the area of Schiff base and their metal complexes. This book will give an in-depth account of the properties of Schiff base and their metal complexes. This book will discuss the details of synthesis methods for Schiff base and their metal complexes. This book will cover emerging trends in the use of Schiff base metal complexes in the industry. This book will provide an overview of the wider biological applications of Schiff base metal complexes
Recent studies indicate that China accounts for about 96 percent of the world's supply of rare earth materials (REMs). With REMs becoming increasingly important for a growing number of high-tech applications, appropriate action must be taken to mitigate the effects of a shortage of critical REMs in defense systems and components. Bringing together information previously available only from disparate journal articles and databases, Rare Earth Materials: Properties and Applications describes the unique characteristics and applications of 17 REMs. It defines their chemical, electrical, thermal, and optical characteristics. Maintaining a focus on physical and chemical properties, it addresses the history and critical issues pertaining to mining and processing of REMs. In this book, Dr. A.R. Jha continues his distinguished track record of distilling complex theoretical physical concepts into an understandable technical framework that can be extended to practical applications across commercial and industrial frameworks. He summarizes the chemical, optical, electrical, thermal, magnetic, and spectroscopic properties of REMs best suited for next-generation commercial and military systems or equipment. Coverage includes extraction, recycling, refinement, visual inspection, identification of spectroscopic parameters, quality control, element separation based on specific application, pricing control, and environmental / geo-political considerations. Potential applications are identified with an emphasis on scientific instruments, nuclear resonance imaging equipment, MRI systems, magnetic couplers for uranium enrichment equipment, battery-electrodes, electric motors, electric generators, underwater sensors, and commercial and military sensors. The book describes unique applications of rare earth magnets in all-electric and hybrid electric cars and microwave components. It also considers the use of rare earth magnets in commercial and military systems where weight and size are the critical design requirements. Suitable for both students and design engineers involved in the development of high-technology components or systems, the book concludes by summarizing future applications in electro-optic systems and components, including infrared lasers, diode-pumped solid-state lasers operating at room temperatures, and other sophisticated military and commercial test equipment
Explanation of the structure-property relationship of a given molecule is generally simple because the characteristics of the atomic groups and chemical bonds and the effects emerging from their interaction have long been known, both from theore- cal studies and numerous experimental results. In contrast, it is often difficult to analyze, estimate, and account for the structure-properties relationship in sup- molecules. The characteristics of supramolecules are governed both by the nature of the constituent molecules and by their configuration while the characteristics of the constituent molecules are usually evident as mentioned above; their configu- tions are difficult to control, predict, and accurately estimate because of insufficient knowledge regarding the intermolecular forces. Moreover, since most of the int- molecular forces constructing supramolecules are weak, the supramolecular str- ture may vary depending on various factors, such as modification of the molecular structure, auxiliaries, and experimental conditions. Thus, in order to obtain supramolecules with the desired structures and properties, theoretical investigations on the intermolecular forces and accumulation of experimental studies on the re- tionship between the supramolecular structure and properties are both important.
Theoretical understanding of electronic properties of metallic alloys is of great importance from both fundamental and technological points of view. This text gives a brief account of the crystal structure of both the pure metals and metals with impurities. Physical effects produced by impurities in metals are described, as is the electronic structure of pure simple and transition metals with special reference to rare-earth metals.
SELECTED AS ONE OF THE BEST BOOKS OF 2018 BY THE DAILY MAIL 'A hugely entertaining tour of the periodic table and the 118 elements that are the basic building blocks of everything' Daily Mail In 2016, with the addition of four final elements - nihonium, moscovium, tennessine and oganesson - to make a total of 118 elements, the periodic table was finally complete, rendering any pre-existing books on the subject obsolete. Tim James, the science YouTuber and secondary-school teacher we all wish we'd had, provides an accessible and wonderfully entertaining 'biography of chemistry' that uses stories to explain the positions and patterns of elements in the periodic table. Many popular science titles tend to tell the history of scientific developments, leaving the actual science largely unexplained; James, however, makes use of stories to explain the principles of chemistry within the table, showing its relevance to everyday life. Quirkily illustrated and filled with humour, this is the perfect book for students wanting to learn chemistry or for parents wanting to help, but it is also for anyone who wants to understand how our world works at a fundamental level. The periodic table, that abstract and seemingly jumbled graphic, holds (nearly) all the answers. As James puts it, elements are 'the building blocks nature uses for cosmic cookery: the purest substances making up everything from beetroot to bicycles.' Whether you're studying the periodic table for the first time or are simply interested in the fundamental building blocks of the universe - from the core of the sun to the networks in our brains - Elemental is the perfect guide. Website: timjamesscience.com YouTube: timjamesScience Twitter: @tjamesScience
This volume contains the Proceedings of the NATO Advanced Research Workshop on "The Chemical Physics of Fullerenes 10 (and 5) Years Later," which was included in the program of the Enrico Fermi School and held in Varenna, Italy, on June 12-16, 1995. The occasion of the workshop was the lOth birthday of Coo, discovered in molecular beams in the summer of 1985, and the quasi simultaneous 5th anniversary of the synthesis of solid Coo. The motivation, however, was not the celebration of such events, rather the need for a realistic diagnosis of the current situation of fullerene research. The best solution for a constructive discussion was to gather in one place the protagonists of the fullerene adventure from the early discoveries to the present. The NATO Science Committee and the Italian Physical Society have made it possible through their generous financial support and organizational aid, which I wish to acknowledge with special gratitude. Buckminsterfullerene Coo has driven a line of research which, especially after the 1990 discovery, had been considered extremely promising both from the chemistry and material science viewpoints. In spite of this, very recently the funding and support have strongly decreased. Several hopes have been frustrated, and especially that of solid state physicists who hoped to come up with fullerene-based high-Tc superconductors.
I. Electron Transfer Reactions.- 1. Electron Transfer: General and Theoretical.- 1.1. Overview and General Aspects of Reactions in Fluid Media.- 1.2. Electronic Coupling (Ke1).- 1.2.1. The Distance Dependence of Electron Transfer Rates.- 1.2.2. Electric and Magnetic Field Effects on Electronic Coupling and Related Problems of Photoinduced Electron Transfer.- 1.3. The Free-Energy Dependence of Electron Transfer Reactions: The "Inverted Region" Problem.- 1.4. The Effects of Solvent Dynamics.- 1.5. Metal-to-Metal and Ligand-to-Ligand Charge Transfer ("Inter-valence" Transfer).- 2. Redox Reactions between Two Metal Complexes.- 2.1. Introduction.- 2.2. Reactions of Metal Aqua and Oxo Ions.- 2.2.1. Titanium.- 2.2.2. Vanadium and Chromium.- 2.2.3. Iron.- 2.2.4. Molybdenum and Tungsten.- 2.3. Reactions of Metal Ion Complexes.- 2.3.1. Chromium.- 2.3.2. Manganese.- 2.3.3. Iron, Ruthenium, and Osmium.- 2.3.4. Cobalt and Rhodium.- 2.3.5. Nickel, Palladium, and Platinum.- 2.3.6. Copper and Silver.- 2.3.7. Technetium and Rhenium.- 2.3.8. Ytterbium.- 2.4. Reactions with Metalloproteins.- 2.4.1. Introduction.- 2.4.2. Copper Proteins.- 2.4.3. Hemoglobin and Myoglobin.- 2.4.4. Cytochromes.- 2.4.5. Iron-Sulfur Proteins.- 3. Metal-Ligand Redox Reactions.- 3.1. Introduction.- 3.2. Oxygen, Peroxide, and Other Oxygen Compounds.- 3.2.1. Dioxygen.- 3.2.2. Hydrogen Peroxide.- 3.2.3. Alkyl Hydroperoxides.- 3.3. Nitrogen Compounds and Oxyanions.- 3.3.1. Hydrazine, Azides, Hydroxylamines, and Derivatives.- 3.3.2. Oxynitrogen Compounds.- 3.3.3. Amines and Nitriles.- 3.4. Sulfur Compounds and Oxyanions.- 3.4.1. Peroxodisulfate and Peroxomonosulfate.- 3.4.2. Sulfur Dioxide and Sulfite Ions.- 3.4.3. Sulfoxides.- 3.4.4. Alkyl Sulfur Compounds.- 3.4.5. Selenium, Tellurium, and Elemental Sulfur.- 3.5. Halogen, Halides, and Halogen Oxyanions.- 3.5.1. Halogens.- 3.5.2. Halides.- 3.5.3. Oxyhalogen Compounds.- 3.6. Phosphorus, Arsenic, and Oxycompounds.- 3.6.1. Phosphorus Oxyanions.- 3.6.2. Phosphines and Arsines.- 3.7. Inorganic Radicals.- 3.8. Ascorbic Acid, Quinols, Catechols, and Diols.- 3.8.1. Ascorbic Acid.- 3.8.2. Aromatic Diols and Diones.- 3.8.3. Aromatic and Aliphatic Alcohols.- 3.9. Carboxylic Acids, Carboxylates, Carbon Dioxide, and Carbon Monoxide.- 3.9.1. Carboxylic Acids and Carboxylates.- 3.9.2. Carbon Dioxide and Carbon Monoxide.- 3.10. Alkyl Halides.- 3.11. Organic Radicals.- II. Substitution and Related Reactions.- 4. Reactions of Compounds of the Nonmetallic Elements.- 4.1. Boron.- 4.2. Carbon.- 4.3. Silicon.- 4.4. Germanium.- 4.5. Nitrogen.- 4.6. Phosphorus.- 4.7. Arsenic.- 4.8. Oxygen.- 4.9. Sulfur.- 4.10. Selenium and Tellurium.- 4.11. Halogens, Krypton, and Xenon.- 4.11.1. Fluorine.- 4.11.2. Chlorine.- 4.11.3. Bromine.- 4.11.4. Iodine.- 4.11.5. Krypton and Xenon.- 4.12. Oscillating Reactions.- 5. Substitution Reactions of Inert-Metal Complexes-Coordination Numbers 4 and 5.- 5.1. Introduction.- 5.2. Associative Ligand Exchange at Square-Planar Platinum(II).- 5.3. Associative Ligand Exchange at Square-Planar Palladium(II).- 5.4. Ligand Exchange at Platinum(II) by Dissociative Processes.- 5.5. Ligand Exchange at Nickel.- 5.6. Reactions of Planar Ir(I), Rh(I), Au(III), and Cu(II) Complexes.- 5.7. Five-Coordinate Species.- 5.8.TransEffect.- 5.9. Isomerizations.- 6. Substitution Reactions of Inert-Metal Complexes-Coordination Numbers 6 and Above: Chromium.- 6.1. Introduction.- 6.2. Aquation and Solvolysis of Chromium(III) Complexes.- 6.2.1. [Cr(III)(L5)X]n+1Systems (L = OH2, NH3).- 6.2.2. Cr(III)-C Bond Rupture.- 6.2.3. Amine and Other Complexes.- 6.2.4. Dechelation/Chelation Processes.- 6.2.5. Metal-Ion-Assisted Aquation.- 6.2.6. Porphyrins.- 6.3. Formation of Chromium(III) Complexes.- 6.3.1. The Nature of the Cr3+Cation in Aqueous Solution.- 6.3.2. Anation Reactions.- 6.4. Base Hydrolysis.- 6.5. Oxidation and Reduction of Cr(III) Complexes.- 6.6. Isomerization and Racemization.- 6.7. Photochemistry and Photophysics of Chromium(III) Complexes.-...
The next article includes the description of the rich chemistry of phosphinines, including azaphosphinines. The sixth article deals with synthetic approaches to different types of 1- heterophosphacyclanes, including four-, five-, and six-membered P-heterocycles. The next two articles cover the chemistry of phosphorus containing mac- cycles. The phosphorus containing calixarenes have attracted much attention in recent years due to their various functions such as metal cations binding, catalysis, molecular recogination, and bioactivity. Likewise, other phosphorus-containing macrocycles, cryptands, and dendrimers find various uses in analytical chemistry and biochemistry. We hope to include the following articles in the second volume on phosphorous heterocycles: Diazaphospholes Selected phosphorous heterocycles containing a stereogenic phosphorus Heterophenes carrying phosphorus functional groups as key structures The synthesis and chemistry of the phospholane ring system Synthesis and bioactivity of 2,5-dihydro-1,2-oxaphosphole-2-oxide derivatives Recent developments in the chemistry of N-heterocyclic phosphines. I would be failing in my duty if I do not express my sincere thanks to the people at Springer, particularly Ms. Birgit Kollmar-Thoni and Ms. Ingrid Samide, for coordinating the project with great dedication.
Zeolites have unusual properties and as a result they are some of the most interesting inorganic materials known today. In contrast to conventional nanomaterials, zeolites exhibit a long-term stable inner void system on the nanometer scale and their properties are almost independent from the crystal size. This volume summarizes the known properties of natural zeolites and, importantly, shows how they can be synthesized by simulating the conditions of natural formation. Systematically, a direct correlation between the glassy precursor composition and that of the zeolite product is established. The zeolite crystal morphology obtained at given synthesis conditions allows direct conclusions on the conditions of formation in nature. This book is a valuable practical guide and tool for solid-state chemists, physicists, mineralogists and engineers.
The Inorganic Synthesis Series provides all users of inorganic substances with detailed and foolproof procedures for the preparation of important and timely compounds. This new volume includes information on water-solubilizing ligands for organometallics, labile ligand complexes, and the syntheses of cluster compounds and hydrides. |
You may like...
Fire and Polymers - Materials and…
Charles A. Wilkie, Gordon L. Nelson, …
Hardcover
R2,999
Discovery Miles 29 990
Epitaxial Growth of Complex Metal Oxides
Gertjan Koster, Mark Huijben, …
Paperback
R6,167
Discovery Miles 61 670
Ionic Liquids as Green Solvents…
Robin D. Rogers, Kenneth R. Seddon
Hardcover
R2,369
Discovery Miles 23 690
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,561
Discovery Miles 25 610
Handbook on the Physics and Chemistry of…
Jean-Claude G. Bunzli, Vitalij K Pecharsky
Hardcover
R5,660
Discovery Miles 56 600
Comprehensive Organometallic Chemistry…
Gerard Parkin, Karsten Meyer, …
Hardcover
R174,021
Discovery Miles 1 740 210
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R5,887
Discovery Miles 58 870
Comprehensive Inorganic Chemistry III
J. Reedijk, Kenneth R. Poeppelmeier
Hardcover
R95,239
Discovery Miles 952 390
|