![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
This volume on iron-sulfur proteins includes chapters that describe the initial discovery of iron-sulfur proteins in the 1960s to elucidation of the roles of iron sulfur clusters as prosthetic groups of enzymes, such as the citric acid cycle enzyme, aconitase, and numerous other proteins, ranging from nitrogenase to DNA repair proteins. The capacity of iron sulfur clusters to accept and delocalize single electrons is explained by basic chemical principles, which illustrate why iron sulfur proteins are uniquely suitable for electron transport and other activities. Techniques used for detection and stabilization of iron-sulfur clusters, including EPR and Mossbauer spectroscopies, are discussed because they are important for characterizing unrecognized and elusive iron sulfur proteins. Recent insights into how nitrogenase works have arisen from multiple advances, described here, including studies of high-resolution crystal structures.
An up-to-date, comprehensive guide to LITHIUM CHEMISTRY
Chalcogen-nitrogen chemistry involves the study of compounds that exhibit a linkage between nitrogen and sulfur, selenium or tellurium atoms. Since the publication of A Guide to Chalcogen-Nitrogen Chemistry in 2005, the emphasis of investigations of chalcogen-nitrogen compounds has advanced from a focus on fundamental studies to the development of practical applications, as indicated by the title of this new edition. Pharmaceutical applications of organic sulfur-nitrogen compounds include drugs for the treatment of various diseases, as well as probes for locating tumour cells. From a materials perspective, carbon-containing chalcogen-nitrogen heterocycles have applications in everyday devices such as LEDs and solar cells. A new technology based on binary sulfur nitrides is being used for fingerprint detection in forensic science. As a result, this book includes seven new chapters and updates the others with extensive literature coverage of developments since 2005 while retaining earlier seminal results. This comprehensive text is essential for anyone working in the field, and the four introductory chapters emphasise general concepts that will be helpful to the non-specialist. The treatment is unique in providing a comparison of sulfur, selenium and tellurium compounds. Each chapter is designed to be self-contained, and there are extensive cross-references between chapters.
Boasting numerous industrial applications, inorganic chemistry forms the basis for research into new materials and bioinorganic compounds such as calcium that act as biological catalysts. Now complete, this highly acclaimed series presents current knowledge in all areas of inorganic chemistry, including chemistry of the elements; organometallic, polymeric and solid-state materials; and compounds relevant to bioinorganic chemistry.
This book provides fundamental knowledge of ceramics science and technology in a compact volume. Based on inorganic chemistry, it is intended as a reader for graduate students and young researchers beginning work in ceramics. The importance of the book is that it provides a scientific understanding of structure, properties, and processing from the chemical aspect, leading to creation of future ceramics. Ceramics have high hardness, strength, thermal and chemical stability, as well as various electromagnetic functions. To take full advantage of ceramics, their use has been advanced to engineering and electronic ceramics. Most ceramics have been fabricated by powder processing, and new technologies have also evolved such as CVD and sol-gel methods: new ceramics aimed at new functions of highly pure oxides and artificial nitrides, carbides, and borides; fine ceramics focused on precise control of composition and microstructure; and design of unique morphology, such as nanoparticles, nanofibers, nanosheets, mesoporous materials, and hybrids. Materials are composed of atoms and molecules. They are assembled into crystals and are amorphous, leading to 3-D micro/nano structures. In addition to the topics described above, this book shows the importance of chemistry for materials design at the nanometer scale, and that chemistry develops new fields of environment, energy, informatics, biomaterials, and other areas.
This edited book explores the use of surfactants in upstream exploration and production (E&P). It provides a molecular, mechanistic and application-based approach to the topic, utilising contributions from the leading researchers in the field of organic surfactant chemistry and surfactant chemistry for upstream E&P. The book covers a wide range of problems in enhanced oil recovery and surfactant chemistry which have a large importance in drilling, fracking, hydrate inhibition and conformance. It begins by discussing the fundamentals of surfactants and their synthesis. It then moves on to present their applicability to a variety of situations such as gas injections, shale swelling inhibition, and acid stimulation. This book presents research in an evolving field, making it interesting to academics, postgraduate students, and experts within the field of oil and gas.
"Polymineral-Metasomatic Crystallogenesis" is dedicated to the foundations of polymineral crystallogenesis in solutions typically occurring in nature. Effects, laws, and mechanisms of a metasomatic crystal replacement, joint crystal growth of different phases, mixed crystal formation, and aggregate re-crystallization as well as oriented overgrowth (epitaxy and quasi-epitaxy) and crystal habit origin are considered experimentally. The behaviour of these processes in nature are discussed in addition to pseudomorphs, poikilitic crystals (and other replacement forms), features of rapakivi structure, fluorite morphology, and many more. The concept is a generalization of the classic theory on crystallogenesis which is complicated by phase interaction in polymineral systems. "Polymineral-Metasomatic Crystallogenesis" is designed for chemists, geologists, physicists, and postgraduates and advanced undergraduate students of these fields.
The nature and directionality of halogen bonding; the sigma hole, by Timothy Clark, Peter Politzer, Jane S. Murray Solid-state NMR study of halogen-bonded adducts, by David Bryce Infrared and Raman measurements of halogen bonding in cryogenic solutions, by Wouter Herrebout Halogen bonding in the gas phase, by Anthony C. Legon Halogen bonding in solution, Mate Erdelyi Unconventional motifs for halogen bonding, by Kari Rissanen Halogen bonding in supramolecular synthesis, Christer Aakeroey Halogen bond in synthetic organic chemistry, Stefan M. Huber Anion recognition in solution via halogen bonding, Mark S. Taylor Anion transport with halogen bonds, by Stefan Matile Halogen bonding in silico drug design, by Pavel Hobza, Kevin Riley Biological halogen bonds: An old dog with new tricks, by P. Shing Ho Principles and applications of halogen bonding in medicinal chemistry, by Frank M. Boeckler Halogen bond in molecular conductors and magnets, by Marc Foumigue Halogen bonding towards design of organic phosphors, by Wei Jun Jin Halogen bond in photoresponsive materials, by Pierangelo Metrangolo, Giuseppe Resnati, Arri Priimagi
Developments in the title field have been greatly motivated by the studies of transactinoid elements; selected experiments and their results are presented for visualization. Primarily, the book is about the physico-chemical basis of the experimental methods and techniques which are or can be used for compounds of all heavy metals; about evaluation of the desorption energies from the original gas-solid chromatography data; and about concepts and approaches which allow to estimate bulk properties of the compounds even from experiments with a few short-lived atoms. The book attempts for the first time critical discussion of the state of art from a coherent point of view to help better understanding. It was written both for the newcomers to the field and experts, its goal is also to stimulate wider use of the advantageous gas phase techniques for common elements.
The series Structure and Bonding publishes critical reviews on
topics of research concerned with chemical structure and bonding.
The scope of the series spans the entire Periodic Table and
addresses structure and bonding issues associated with all of the
elements. It also focuses attention on new and developing areas of
modern structural and theoretical chemistry such as nanostructures,
molecular electronics, designed molecular solids, surfaces, metal
clusters and supramolecular structures. Physical and spectroscopic
techniques used to determine, examine and model structures fall
within the purview of Structure and Bonding to the extent that the
focus is on the scientific results obtained and not on specialist
information concerning the techniques themselves. Issues associated
with the development of bonding models and generalizations that
illuminate the reactivity pathways and rates of chemical processes
are also relevant.The individual volumes in the series are
thematic. The goal of each volume is to give the reader, whether at
a university or in industry, a comprehensive overview of an area
where new insights are emerging that are of interest to a larger
scientific audience. Thus each review within the volume critically
surveys one aspect of that topic and places it within the context
of the volume as a whole. The most significant developments of the
last 5 to 10 years should be presented using selected examples to
illustrate the principles discussed. A description of the physical
basis of the experimental techniques that have been used to provide
the primary data may also be appropriate, if it has not been
covered in detail elsewhere. The coverage need not be exhaustive in
data, but should rather be conceptual, concentrating on the new
principles being developed that will allow the reader, who is not a
specialist in the area covered, to understand the data presented.
Discussion of possible future research directions in the area is
welcomed. Review articles for the individual volumes are invited by
the volume editors.
In modern times, group-theoretical principles have been exploited in the study of atomic and molecular systems, electronic and vibrational spectra of all kinds, a wide variety of thermodynamic systems, chemical reactions, the enumeration of a host of differing chemical species, and the chemical combinatorial problems of many kinds. Chapter 1 of this volume sets out by addressing the meaning of the term "group representation." It explores the various theoretical frameworks that have been evolved for the application of group theory in the physical sciences. Specific applications of combinatorial techniques, derived from or built around the Enumeration Theorem of Polya, in the study of spectroscopy is the theme adopted in chapter 2.;In chapter 3 the spotlight falls on methods that may be used to obtain the eigenvalue spectra of a wide variety of chemically significant molecular graphs while the problem of the treatment of molecular species that do not have a rigid molecular skeleton is addressed in chapter 4. The two final chapters both relate in some way to potential energy surfaces. In chapter 5 the topic under discussion is molecular shape and ways in which this notion may be characterised mathematically. Chapter 6 examines the potential energy surface itself. Here it is shown that group theory can be exploited to minimise the computational effort required to construct the potential energy surfaces and also to ensure that such surfaces correctly simulate dynamically conserved physical quantities.
This thesis shares new findings on the interfacial mechanics of graphene-based materials interacting with rigid/soft substrate and with one another. It presents an experimental platform including various loading modes that allow nanoscale deformation of atomically thin films, and a combination of atomic force microscopy (AFM) and Raman spectroscopy that allows both displacement and strain to be precisely measured at microscale. The thesis argues that the rich interfacial behaviors of graphene are dominated by weak van der Waals force, which can be effectively modulated using chemical strategies. The continuum theories are demonstrated to be applicable to nano-mechanics and can be used to predict key parameters such as shear/friction and adhesion. Addressing key interfacial mechanics issues, the findings in thesis not only offer quantitative insights in the novel features of friction and adhesion to be found only at nanoscale, but will also facilitate the deterministic design of high-performance graphene-based nanodevices and nanocomposites.
This book explores how structure impacts the dynamics of organic molecules in an extensive and impressive range of femtosecond time-resolved experiments that are combined with state-of-the-art theoretical approaches. It explores an area of molecular dynamics that remains largely uncharted and provides an extraordinary overview, along with novel insights into the concept of the dynamophore - the functional group of ultrafast science. Divided into four parts, this book outlines both experimental and computational studies on the VUV photoinduced dynamics of four cyclic ketones and one linear ketone, the ring-opening and dissociative dynamics of cyclopropane, and the potential ultrafast intersystem crossing in three methylated benzene derivatives. Model systems for the disulfide bond and the peptide bond, both of which are related to the structure of proteins, are also investigated. This highly informative and carefully presented book offers a wealth of scientific insights for all scholars with an interest in molecular dynamics.
This book covers all important nomenclature, theories of bonding and stereochemistry of coordination complexes. The authors have made an effort to inscribe the ideas knowledge, clearly and in an interesting way to benefit the readers. The complexities of Molecular Orbital theory have been explained in a very simple and easy manner. It also deals with transition and inner transition metals. Conceptually, all transition and inner transition elements form complexes which have definite geometry and show interesting properties. General and specific methods of preparation, physical and chemical properties of each element has been discussed at length. Group wise study of elements in d-block series have been explained. Important compounds, complexes and organometallic compounds of metals in different oxidation states have been given explicitly. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
The book starts with an introduction on silicon isotopes and related analytical methods, and explains the mechanisms of silicon isotope fractionation. Silicon isotope distributions in lithosphere, hydrosphere and biosphere are shown based on results from field studies, and silicon isotope relevance for applications are presented.
This go-to text provides information and insight into physical inorganic chemistry essential to our understanding of chemical reactions on the molecular level. One of the only books in the field of inorganic physical chemistry with an emphasis on mechanisms, it features contributors at the forefront of research in their particular fields. This essential text discusses the latest developments in a number of topics currently among the most debated and researched in the world of chemistry, related to the future of solar energy, hydrogen energy, biorenewables, catalysis, environment, atmosphere, and human health.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors
For the first time the discipline of modern inorganic chemistry has
been systematized according to a plan constructed by a council of
editorial advisors and consultants, among them three Nobel
laureates (E.O. Fischer, H. Taube and G. Wilkinson).
This volume first considers the categories of zinc metalloenzymes, together with models of the enzymic metal-ion binding sites. It covers the nutritional aspects of zinc: its absorption and excretion, its influence on the activity of enzymes and hormones, and the zinc deficiency syndrome.
A detailed treatment of information relating to fluid-oxide interfaces. It outlines methods for quantifying adsorption and desorption of polymeric and non-polymeric solutes at the gas- and solution-oxide interfaces. It also analyzes novel properties of oxide membranes and the synthesis and dissolution of oxide solids.
For the first time the discipline of modern inorganic chemistry has
been systematized according to a plan constructed by a council of
editorial advisors and consultants, among them three Nobel
laureates (E.O. Fischer, H. Taube and G. Wilkinson).
The precipitation of metal oxides from aqueous solutions creates nanoparticles with interesting solid state properties, thus building a bridge between solution chemistry and solid state chemistry. This book is the first monograph to deal with the formation of metal oxides from aqueous solutions with emphasis on the formation and physical chemistry of nanoparticles. Metal Oxide Chemistry and Synthesis: From Solution to Solid State
Part II is devoted to the surface chemistry of oxide particles. The basic concepts relating to the reactivity of the oxide-solution interface are introduced and applied to various adsorption phenomena, such as aggregation, stability of particle size against ripening, etc. These properties are exploited for the synthesis of nanomaterials for a broad range of applictions such as ceramic powders, catalysts and nanocomposites. This will also be of interest to those wishing to understand geochemical and some biological processes. As well as being invaluable to researchers and postgraduate students of inorganic chemistry, this book will also be appreciated by solid-state chemists, materials scientists and colloid chemists with an interest in metal oxides.
This volume on iron-sulfur proteins includes chapters that discuss how microbes, plants, and animals synthesize these complex prosthetic groups, and why it is important to understand the chemistry and biogenesis of iron sulfur proteins. In addition to their vital importance in mitochondrial respiration, numerous iron sulfur proteins are important in maintenance of DNA integrity. Multiple rare human diseases with different clinical presentations are caused by mutations of genes in the iron sulfur cluster biogenesis pathway. Understanding iron sulfur proteins is important for understanding a rapidly expanding group of metabolic pathways important in all kingdoms of life, and for understanding processes ranging from nitrogen fixation to human disease.
For the first time the discipline of modern inorganic chemistry has
been systematized according to a plan constructed by a council of
editorial advisors and consultants, among them three Nobel
laureates (E.O. Fischer, H. Taube and G. Wilkinson).
'This is an an absolutely wonderful book that is full of gems about the elements and the periodic table ... All in all, the book is highly recommended to philosophers of chemistry. As philosophers we have a natural tendency to concentrate on generalities and not to get too involved in the specifics and the details. Above all else, this new book reminds us that such an approach needs to be tempered by a detailed knowledge of the exceptions and features that go against the simplified generalities which we so cherish.' [Read Full Review]Eric ScerriFoundations of Chemistry'Many questions are dealt with in a clearly written way in this stimulating and innovative book. The reader will quickly become interested in the subject and will be taken on tour through this Periodic Table in a very readable way, both for students and teachers ... The number of illustrations is good, and clear. This book is indeed unique and quite thought-provoking ... This book is highly recommended for students, teachers, researchers and not only chemists! Geologists, biochemist and also physicists will find it very interesting to read.' [Read Full Review]Chemistry InternationalThat fossilized chart on every classroom wall - isn't that The Periodic Table? Isn't that what Mendeleev devised about a century ago? No and No. There are many ways of organizing the chemical elements, some of which are thought-provoking, and which reveal philosophical challenges. Where does hydrogen 'belong'? Can an element occupy more than one location on the chart? Which are the Group 3 elements? Is aluminum in the wrong place? Why is silver(I) like thallium(I)? Why is vanadium like molybdenum? Why does gold form an auride ion like a halide ion? Does an atom 'know' if it is a non-metal or metal? Which elements are the 'metalloids'? Which are the triels? So many questions! In this stimulating and innovative book, the Reader will be taken on a voyage from the past to the present to the future of the Periodic Table. This book is unique. This book is readable. This book is thought-provoking. It is a multi-dimensional examination of patterns and trends among the chemical elements. Every reader will discover something about the chemical elements which will provoke thought and a new appreciation as to how the elements relate together. |
You may like...
Handbook on the Physics and Chemistry of…
Jean-Claude G. Bunzli, Vitalij K Pecharsky
Hardcover
R5,660
Discovery Miles 56 600
Fluorine-Related Nanoscience with Energy…
Donna Nelson, Christohpher Brammer
Hardcover
R2,724
Discovery Miles 27 240
Comprehensive Organometallic Chemistry…
Gerard Parkin, Karsten Meyer, …
Hardcover
R174,021
Discovery Miles 1 740 210
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R5,887
Discovery Miles 58 870
|