![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
Reactive and functional polymers are manufactured with the aim of improving the performance of unmodified polymers or providing functionality for different applications. These polymers are created mainly through chemical reactions, but there are other important modifications that can be carried out by physical alterations in order to obtain reactive and functional polymers. This volume presents a comprehensive analysis of these reactive and functional polymers. Reactive and Functional Polymers Volume One provides the principles and foundations for the design, development, manufacture and processing of reactive and functional polymers based primarily on biopolymers, polyesters and polyurenthanes. The text provides an in-depth review of updated sources on reactive resins and silicones. In this book, world-renowned researchers have participated, including Dr. Runcang Sun (Associate editor for the journal 'Carbohydrate Polymers'). With its comprehensive scope and up-to-date coverage of issues and trends in Reactive and Functional Polymers, this is an outstanding book for students, professors, researchers and industrialists working in the field of polymers and plastic materials.
Potable water supplies that contain arsenic concentrations high
enough to pose a human health hazard are a problem of international
proportion. Surface water and ground water are both at risk of
arsenic contamination. However, most incidences of high
concentrations of arsenic have been reported for ground water,
which is the subject of this book. The geochemistry of arsenic in
aqueous environments is complex. This book consolidates much of
what is known about the geochemistry of arsenic and provides new
information on relationships between high concentrations of arsenic
in ground water and geochemical environments. The subject matter of
this book ranges in scope from molecular-scale geochemical
processes that affect the mobility of arsenic in ground water, to
arsenic contaminated ground water at the national scale. Chapters
were contributed by an international group of research scientists
from a broad range of backgrounds.
This book investigates applicability of various emerging strategies to improve important properties and features of metal oxide materials that can be used further to advance their photocatalytic and photoelectrochemical performances. The range of discussed strategies includes introduction of intrinsic and extrinsic deficiencies, fabrication of heterojunction and utilizing of metal nanoparticles in the form of deposited or embedded formations. Each of them is addressed as separate case in order to reach full and comprehensive assessment of their most fundamental principles and basics as well as accessing pivotal advantages and disadvantages. Furthermore, additional discussion is dedicated to achieving thorough awareness over methods and experimental protocols that are used to realize them and also probing changes which they induce in electronic and geometrical configurations of metal oxide materials. It is believed that this book might become a valuable addition to extend further current knowledge about photocatalysis and material processing.
Advances in Inorganic Chemistry, Volume 79, the latest release in an esteemed series that highlights new advances in the field of inorganic chemistry, presents new and interesting topics authored by an international field of experts.
This volume provides the reader with the most up-to-date and relevant knowledge on the reactivity of metals located in zeolite materials, either in framework or extra-framework positions, and the way it is connected with the nature of the chemical environment provided by the host. Since the first report of the isomorphous substitution of titanium in the framework of zeolites giving rise to materials with unusual catalytic properties, the incorporation of many other metals have been investigated with the aim for developing catalysts with improved performance in different reactions. The continuous expansion of the field, both in the variety of metals and zeolite structures, has been accompanied by an increasing focus on the relationship between the reactivity of metal centers and their unique chemical environment. The concepts covered in this volume are of interest to people working in the field of inorganic and physical chemistry, catalysis and chemical engineering, but also for those more interested in theoretical approaches to chemical reactivity. In particular the volume is useful to postgraduate students conducting research in the design, synthesis and catalytic performance of metal-containing zeolites in both academic and application contexts.
This book provides comprehensive coverage of nanocomposite materials obtained by the sol-gel method, from synthesis to applications and including design tools for combining different properties. Sol-gel nanocomposites are of great interest in meeting processing and application requirements for the development of multifunctional materials. These materials are already commercialized for a number of applications from scratch-resistant and anti-adhesive coatings to optical materials with active and passive properties. Biomedical applications, holographic recordings, fuel cells and hydrogen storage, resists and catalysts are among the potential uses. The novel mechanical, optical and electronic properties of nanocomposite materials depend not only on the individual component materials, but also on their morphology and nanoscale interfacial characteristics. Sol-gel is a highly versatile method for obtaining both the matrix and the filler of the nanocomposite and for chemically adjusting the interface to optimize structure and properties. Although nanocomposites are widely discussed in the literature, the focus has been mainly on polymer nanocomposites. This book addresses nanocomposites based on inorganic or hybrid organic-inorganic matrices, with an emphasis on the scientific principles which are the basis for nanocomposite sol-gel synthesis and applications. A didactic approach is followed, with different topics developed from a fundamental point of view together with key examples and case studies. First comprehensive treatment of nanocomposites obtained by sol-gel methods Focuses on nanocomposites with inorganic and hybrid organic-inorganic matrices Describes design tools to optimize structure and properties for various applications Covers synthesis, processing, characterization, and modeling Uses first principles to describe the influence of interfacial characteristics on materials properties Presents case studies for both films and bulk applications Provides examples of products on the market, with descriptions of the scientific principles at the base of their success Includes contributions from recognized leaders in this multidisciplinary area.
Structural Chemistry of Inorganic Actinide Compounds is a
collection of 13 reviews on structural and coordination chemistry
of actinide compounds. Within the last decade, these compounds have
attracted considerable attention because of their importance for
radioactive waste management, catalysis, ion-exchange and
absorption applications, etc. Synthetic and natural actinide
compounds are also of great environmental concern as they form as a
result of alteration of spent nuclear fuel and radioactive waste
under Earth surface conditions, during burn-up of nuclear fuel in
reactors, represent oxidation products of uranium miles and mine
tailings, etc. The actinide compounds are also of considerable
interest to material scientists due to the unique electronic
properties of actinides that give rise to interesting physical
properties controlled by the structural architecture of respective
compounds.
This outstanding thesis describes a detailed investigation into the use of low-oxidation-state group 14 complexes in catalysis, developed at the cutting edge of inorganic and organometallic chemistry. It includes the preparation of a number of landmark compounds, some of which challenge our current understanding of metal-metal bonding and low-oxidation-state main group chemistry. Among the many highlights of this thesis, the standout result is the development of the first well-defined, low- oxidation-state main group hydride systems as highly efficient catalysts in the hydroboration of carbonyl substrates, including carbon dioxide, which are as efficient as those observed in more traditional, transition-metal catalyses. These results essentially define a new subdiscipline of chemistry.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
MICHAEL T. POPE AND ACHIM MULLER Department of Chemistry, Georgetown University, Washington, DC 20057-2222, U.S.A.; Department of Chemistry, University of Bielefeld, D-4BOO Bielefeld 1, F.R.G. Polyoxometalates, from their discovery and early development in the final decades of the 19th century to their current significance in disciplines as diverse as chemistry, mathematics, and medicine, continue to display surprisingly novel structures, unexpected reactivities and applications, and to attract increasing attention worldwide. Most of the contributors to the present volume participated in the workshop held at the Center for Interdisciplinary Research at the University of Bielefeld, July 15-17, 1992. The choice of topics illustrates some of the variety of directions and fields in which polyoxometalates can play an important role. Although many of the leading polyoxometalate research groups are represented here, we regret that time constraints, financial limitations, and in some cases difficulties of communication did not allow us to include significant and imp- tant work from other groups outside Europe and North America. In the following we briefly review the current status of the field of po- oxometalates.
This book embraces the entire range of problems associated with nonstoichiometry, disorder and order in solids. Although dealing primarily with transition metal carbides, nitrides and oxides, the methods and models presented are applicable to all systems with substitutional disorder and they permit a unified approach to the structure, phase diagrams and other physical and chemical properties of these systems. This book will be useful for physicists addressing the problems of order and disorder in solids, for chemists increasingly aware that the majority of natural and synthetic materials are nonstoichiometric, and for crystallographers studying new and unusual crystal structures. Materials scientists using refractory compounds to create novel superhard and tough materials or materials for modern electronics will find essential information on the interplay between structural effects and many different properties of transition metal compounds.
This book provides a comprehensive and critical overview of carbon materials in terms of molecular structure, intermolecular relationships, bulk and surface properties, and their behavior in current and emerging applications. It also presents advances in carbon research and development.
This collection brings together engineers, scientists, scholars, and entrepreneurs to present their novel and innovative contributions in the domain specific to metal-matrix composites and on aspects specific to processing, characterization, mechanical behavior, measurements, failure behavior, and kinetics governing microstructural influences on failure by fracture. Topics include but are not limited to: * Metals and metal-matrix composites * Nano-metal based composites * Intermetallic-based composites Contributions in the above topics connect to applications in industry-relevant areas: automotive; nuclear and clean energy; aerospace; failure analysis; biomedical and healthcare; and heavy equipment, machinery, and goods.
The present volume Uranium C5 covers the physical properties of U0 - the production 2 and preparation of U0 were already treated in Uranium C4, whereas the chemical proper 2 ties will be the subject of the forthcoming part C6. U0 is the most important chemical compound in all aspects of nuclear technology. 2 It is and will be for the foreseeable future the fuel for all light and heavy water reactors as well as (in the mixed crystal with Pu0 ) for the fast breeder reactors. Therefore, the 2 nuclear engineer has to understand the behavior of U0 under all conditions existing during 2 operational (and possibly failure) states of a nuclear reactor, e. g. , not only in the solid state but also to some extent in the liquid and gaseous states. Besides high scientific interest in the sometimes unique or unusual properties, e. g. , at low temperatures, a lot of data and physical properties which are critical for its use as a nuclear fuel have been determined more or less accurately. Creep, swelling, irradiation densification, and fission gas behavior in the fuel are properties which have been evaluated up to the high temperatu res (near the melting point) which may exist in U0 fuel due to its low thermal conductivity. 2 Besides these more technical data there have been accumulated a lot of important physical data, e. g.
The energy arteries of the corporate body of mankind are still fed mainly by fossil fuels; but they are in danger of running dry soon unless new energy sources are made available. One of the most important as well as the most ecologically pure power source is hydrogen, that constitutes the heart of hydrogen power engineering and considered as a future alternative to fossil power sources. The chemistry of carbon nanomaterials and hydrogen materials science will play an important role in hastening the conversion to the Hydrogen Energy System. In this connection, the research and application of materials capable of interacting actively with hydrogen, its accumulating and storing will be of the utmost significance. This is of particular actuality for creation of mobile energy sources both for mobile telephones and for hybrid electric cars that are developed by all large car manufacturers of the world.
Alexander L. Reznichenko and Kai C. Hultzsch: Catalytic ?-Bond Metathesis Zhichao Zhang, Dongmei Cui, Baoli Wang, Bo Liu, Yi Yang: Polymerization of 1,3-Conjugated Dienes with Lanthanide Precursors Frank T. Edelmann: Homogeneous Catalysis using Lanthanide Amidinates and Guanidinates Tianshu Li, Jelena Jenter, Peter W. Roesky: Rare Earth Metal Post-metallocene Catalysts with Chelating Amido Ligands
.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
This volume presents recent advances and current knowledge in the field of supramolecular assemblies based on electrostatic interactions. The flexibility and simplicity of constructing assemblies is explained via several examples, illustrations, figures, case studies, and historical perspectives. Moreover, as there is an increasing demand for the use of theoretical and computational models of the interaction strengths for assisting with the experimental studies, one chapter specifically focuses on the "modelling'' of supramolecular assemblies. Finally, various aspects of the recent advances of the field as well as potential future opportunities are discussed, with the goal being to stimulate critical discussions among the community and to encourage further discovery. This volume aims to inspire and guide fellow scientists and students working in this field and thus it provides a great tool for all researchers, graduates and professionals specializing on the topic.
This collection presents papers from a symposium on extraction of rare metals from primary and secondary materials and residues as well as rare extraction processing techniques used in metal production. Authors cover the extraction of less common or minor metals including elements such as antimony, bismuth, barium, beryllium, boron, calcium, chromium, gallium, germanium, hafnium, indium, manganese, molybdenum, platinum group metals, rare earth metals, rhenium, scandium, selenium, sodium, strontium, tantalum, tellurium, and tungsten. Contributions also discuss rare metals of low-tonnage sales compared to high-tonnage metals (iron, copper, nickel, lead, tin, zinc, or light metals such as aluminum, magnesium, or titanium and electronic metalloid silicon). Authors also cover biometallurgy, hydrometallurgy, and electrometallurgy while novel high-temperature processes such as microwave heating, solar-thermal reaction synthesis, and cold crucible synthesis of rare metals are addressed. Also included in this collection is the design of extraction equipment used in these processes from suppliers as well as laboratory and pilot plant studies.
Embarking on a new millennium, the book in hands describes the recent developments of organsoselenium chemistry in all facets. Various distinguished scientists have contributed, with their skill and expertise, making this book a valuable source for synthetic oriented organic chemists and for those, who want to get a first insight into the chemistry of selenium.
Complex oxide materials, especially the ABO3-type perovskite materials, have been attracting growing scientific interest due to their unique electro-optical properties, leading to photorefractive effects that form the basis for such devices as holographic storage, optical data processing and phase conjugation. The optical and mechanical properties of non-metals are strongly affected by the defects and impurities that are unavoidable in any real material. Nanoscopically sized surface effects play an important role, especially in multi-layered ABO3 structures, which are good candidates for high capacity memory cells. The 51 papers presented here report the latest developments and new results and will greatly stimulate progress in high-tech technologies using perovskite materials. |
![]() ![]() You may like...
Fire and Polymers - Materials and…
Charles A. Wilkie, Gordon L. Nelson, …
Hardcover
R3,186
Discovery Miles 31 860
Comprehensive Inorganic Chemistry III
J. Reedijk, Kenneth R. Poeppelmeier
Hardcover
R101,312
Discovery Miles 1 013 120
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R6,258
Discovery Miles 62 580
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,719
Discovery Miles 27 190
|