![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
MICHAEL T. POPE AND ACHIM MULLER Department of Chemistry, Georgetown University, Washington, DC 20057-2222, U.S.A.; Department of Chemistry, University of Bielefeld, D-4BOO Bielefeld 1, F.R.G. Polyoxometalates, from their discovery and early development in the final decades of the 19th century to their current significance in disciplines as diverse as chemistry, mathematics, and medicine, continue to display surprisingly novel structures, unexpected reactivities and applications, and to attract increasing attention worldwide. Most of the contributors to the present volume participated in the workshop held at the Center for Interdisciplinary Research at the University of Bielefeld, July 15-17, 1992. The choice of topics illustrates some of the variety of directions and fields in which polyoxometalates can play an important role. Although many of the leading polyoxometalate research groups are represented here, we regret that time constraints, financial limitations, and in some cases difficulties of communication did not allow us to include significant and imp- tant work from other groups outside Europe and North America. In the following we briefly review the current status of the field of po- oxometalates.
This book embraces the entire range of problems associated with nonstoichiometry, disorder and order in solids. Although dealing primarily with transition metal carbides, nitrides and oxides, the methods and models presented are applicable to all systems with substitutional disorder and they permit a unified approach to the structure, phase diagrams and other physical and chemical properties of these systems. This book will be useful for physicists addressing the problems of order and disorder in solids, for chemists increasingly aware that the majority of natural and synthetic materials are nonstoichiometric, and for crystallographers studying new and unusual crystal structures. Materials scientists using refractory compounds to create novel superhard and tough materials or materials for modern electronics will find essential information on the interplay between structural effects and many different properties of transition metal compounds.
This outstanding thesis describes a detailed investigation into the use of low-oxidation-state group 14 complexes in catalysis, developed at the cutting edge of inorganic and organometallic chemistry. It includes the preparation of a number of landmark compounds, some of which challenge our current understanding of metal-metal bonding and low-oxidation-state main group chemistry. Among the many highlights of this thesis, the standout result is the development of the first well-defined, low- oxidation-state main group hydride systems as highly efficient catalysts in the hydroboration of carbonyl substrates, including carbon dioxide, which are as efficient as those observed in more traditional, transition-metal catalyses. These results essentially define a new subdiscipline of chemistry.
This book provides a comprehensive and critical overview of carbon materials in terms of molecular structure, intermolecular relationships, bulk and surface properties, and their behavior in current and emerging applications. It also presents advances in carbon research and development.
The present volume Uranium C5 covers the physical properties of U0 - the production 2 and preparation of U0 were already treated in Uranium C4, whereas the chemical proper 2 ties will be the subject of the forthcoming part C6. U0 is the most important chemical compound in all aspects of nuclear technology. 2 It is and will be for the foreseeable future the fuel for all light and heavy water reactors as well as (in the mixed crystal with Pu0 ) for the fast breeder reactors. Therefore, the 2 nuclear engineer has to understand the behavior of U0 under all conditions existing during 2 operational (and possibly failure) states of a nuclear reactor, e. g. , not only in the solid state but also to some extent in the liquid and gaseous states. Besides high scientific interest in the sometimes unique or unusual properties, e. g. , at low temperatures, a lot of data and physical properties which are critical for its use as a nuclear fuel have been determined more or less accurately. Creep, swelling, irradiation densification, and fission gas behavior in the fuel are properties which have been evaluated up to the high temperatu res (near the melting point) which may exist in U0 fuel due to its low thermal conductivity. 2 Besides these more technical data there have been accumulated a lot of important physical data, e. g.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
Alexander L. Reznichenko and Kai C. Hultzsch: Catalytic ?-Bond Metathesis Zhichao Zhang, Dongmei Cui, Baoli Wang, Bo Liu, Yi Yang: Polymerization of 1,3-Conjugated Dienes with Lanthanide Precursors Frank T. Edelmann: Homogeneous Catalysis using Lanthanide Amidinates and Guanidinates Tianshu Li, Jelena Jenter, Peter W. Roesky: Rare Earth Metal Post-metallocene Catalysts with Chelating Amido Ligands
.
The energy arteries of the corporate body of mankind are still fed mainly by fossil fuels; but they are in danger of running dry soon unless new energy sources are made available. One of the most important as well as the most ecologically pure power source is hydrogen, that constitutes the heart of hydrogen power engineering and considered as a future alternative to fossil power sources. The chemistry of carbon nanomaterials and hydrogen materials science will play an important role in hastening the conversion to the Hydrogen Energy System. In this connection, the research and application of materials capable of interacting actively with hydrogen, its accumulating and storing will be of the utmost significance. This is of particular actuality for creation of mobile energy sources both for mobile telephones and for hybrid electric cars that are developed by all large car manufacturers of the world.
This book addresses the development, properties, and applications of atomic-layered boron, or, borophene. The authors explain how borophene was predicted and created before investigating the properties that make it a desirable and useful material. The material is extremely thin and possesses exotic quantum states of new Dirac physics. Applications in superconductivity, plasmonics, and industrial chemical catalysis are examined, along with an examination of the material's unique hydrogen boride and boron nitride forms. Given the varied potential uses for the new-developed borophene, this timely book will be useful to researchers in academia and industry.
This volume discusses the role of ZIF-8 composites in water decontamination as an adsorbent and photocatalyst. Metal-organic frameworks (MOFs) are advanced porous materials and are promising adsorbents with facile modifications, high specific surface area, controllable porosity, and tailored surface properties. Water pollution is a major concern and has endangered human health. Recently, researchers have designed MOFs for use in remediation.
Embarking on a new millennium, the book in hands describes the recent developments of organsoselenium chemistry in all facets. Various distinguished scientists have contributed, with their skill and expertise, making this book a valuable source for synthetic oriented organic chemists and for those, who want to get a first insight into the chemistry of selenium.
Complex oxide materials, especially the ABO3-type perovskite materials, have been attracting growing scientific interest due to their unique electro-optical properties, leading to photorefractive effects that form the basis for such devices as holographic storage, optical data processing and phase conjugation. The optical and mechanical properties of non-metals are strongly affected by the defects and impurities that are unavoidable in any real material. Nanoscopically sized surface effects play an important role, especially in multi-layered ABO3 structures, which are good candidates for high capacity memory cells. The 51 papers presented here report the latest developments and new results and will greatly stimulate progress in high-tech technologies using perovskite materials.
This book investigates applicability of various emerging strategies to improve important properties and features of metal oxide materials that can be used further to advance their photocatalytic and photoelectrochemical performances. The range of discussed strategies includes introduction of intrinsic and extrinsic deficiencies, fabrication of heterojunction and utilizing of metal nanoparticles in the form of deposited or embedded formations. Each of them is addressed as separate case in order to reach full and comprehensive assessment of their most fundamental principles and basics as well as accessing pivotal advantages and disadvantages. Furthermore, additional discussion is dedicated to achieving thorough awareness over methods and experimental protocols that are used to realize them and also probing changes which they induce in electronic and geometrical configurations of metal oxide materials. It is believed that this book might become a valuable addition to extend further current knowledge about photocatalysis and material processing.
Polaritonic chemistry is an emergent interdisciplinary field in which the strong interaction of organic molecules with confined electromagnetic field modes is exploited in order to manipulate the chemical structure and reactions of the system. In the regime of strong light-matter coupling the interaction with the electromagnetic vacuum obliges us to redefine the concept of a molecule and consider the hybrid system as a whole. This thesis builds on the foundations of chemistry and quantum electrodynamics in order to provide a theoretical framework to describe these organic light-matter hybrids. By fully embracing the structural complexity of molecules, this theory allows us to employ long-established quantum chemistry methods to understand polaritonic chemistry. This leads to predictions of substantial structural changes in organic molecules and the possibility of significantly influencing chemical reactions both in the excited and ground states of the system.
This book tells the story of two of the most important figures in the history of chemistry. Carl Wilhelm Scheele (1742-1786) was the first to prepare oxygen and realise that air is a mixture of nitrogen and oxygen; he also discovered many important organic and inorganic substances. His fellow chemist and good friend, Torbern Bergman (1735-1784), was one of the pioneers in analytical and physical chemistry. In this carefully researched biography, the author, Anders Lennartson, explains the chemistry of Scheele and Bergman while putting their discoveries in the context of other 18th-century chemistry. Much of the information contained in this work is available in English for the first time.
This volume discusses the role of MOFs in removal of pharmaceutical pollutants. Metal-organic frameworks (MOFs) are advanced porous materials and are promising adsorbents with facile modifications, high specific surface area, controllable porosity, and tailored surface properties. Pharmaceutical pollution is an issue of concern due to its effects on environment. Recently, researchers have designed MOFs for use in remediation.
This volume presents more than 200 checked procedures, bringing the total number of procedures covered by the series to over 3,000. The syntheses appear in 68 numbered sections, grouped into nine chapters that correspond to current areas of research. Noteworthy is the inclusion of syntheses of the early transition-metals polyoxoanions, a class of compounds notably difficult to prepare in pure form. The compounds synthesized are useful, not only to inorganic chemists, but to organic, polymer and solid state chemists, biochemists and materials scientists.
This collection brings together engineers, scientists, scholars, and entrepreneurs to present their novel and innovative contributions in the domain specific to metal-matrix composites and on aspects specific to processing, characterization, mechanical behavior, measurements, failure behavior, and kinetics governing microstructural influences on failure by fracture. Topics include but are not limited to: * Metals and metal-matrix composites * Nano-metal based composites * Intermetallic-based composites Contributions in the above topics connect to applications in industry-relevant areas: automotive; nuclear and clean energy; aerospace; failure analysis; biomedical and healthcare; and heavy equipment, machinery, and goods.
This volume highlights the latest research in frustrated Lewis pair (FLP) chemistry and its applications. The contributions present the recent developments of the use of FLPs in asymmetric catalysis, polymer synthesis, homogeneous and heterogeneous catalysis, as well as demonstrating their use as a pedagogical tool. The book will be of interest to researchers in academia and industry alike.
The history of the rare earths has entered its third century; trans uranium elements are now a half century old. Both the lanthanide and actinide ele- ments, 30 elements altogether, are f elements, meaninj that their metallic 2 1 1 electronic configurations are typically 6s 5d 4f" and 7s 6d 5f" respectively. To an elementary approximation as summarized in the 'average inorganic chemistry textbook, these configurations cause their chemistry to be described by the trivalent state accompanied by less interesting effects such as the lanthanide contraction. However, the discovery of divalent and tetravalent lanthanides and di- to seven-valent actinides hinted at the existence of more interesting although still classic solid-state and coor- dination chemistry. Metallic halides and chalcogenides and electron-poor cluster compounds have been the outgrowth of many synthetic efforts during the past 25 years or so. These days, one can say that the lan- thanides and actinides are not at all boring; the fascination arises from every element being an individual, having its own chemistry. |
You may like...
Polyoxometalate-Based Hybrids and their…
Majid M. Heravi, Masoud Mirzaei
Paperback
R4,443
Discovery Miles 44 430
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R5,887
Discovery Miles 58 870
Epitaxial Growth of Complex Metal Oxides
Gertjan Koster, Mark Huijben, …
Paperback
R6,167
Discovery Miles 61 670
Ionic Liquids as Green Solvents…
Robin D. Rogers, Kenneth R. Seddon
Hardcover
R2,369
Discovery Miles 23 690
Handbook on the Physics and Chemistry of…
Jean-Claude G. Bunzli, Vitalij K Pecharsky
Hardcover
R5,660
Discovery Miles 56 600
Comprehensive Organometallic Chemistry…
Gerard Parkin, Karsten Meyer, …
Hardcover
R174,021
Discovery Miles 1 740 210
Fire and Polymers - Materials and…
Charles A. Wilkie, Gordon L. Nelson, …
Hardcover
R2,999
Discovery Miles 29 990
Comprehensive Inorganic Chemistry III
J. Reedijk, Kenneth R. Poeppelmeier
Hardcover
R95,239
Discovery Miles 952 390
|