Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Physical chemistry > General
This book highlights the latest advances and outlines future trends in aqueous solvation studies from the perspective of hydrogen bond transition by charge injection, which reconciles the solvation dynamics, molecular nonbond interactions, and the extraordinary functionalities of various solutes on the solution bond network and properties. Focus is given on ionic and dipolar electrostatic polarization, O:H nonbond interaction, anti-HB and super-HB repulsion, and solute-solute interactions. Its target audience includes researchers, scientists, and engineers in chemistry, physics, surface and interface science, materials science and engineering.
This thesis presents a highly innovative study of the ultrafast structural and vibrational dynamics of hydrated phospholipids, the basic constituents of cell membranes. As a novel approach to the water-phospholipid interface, the author studies phosphate vibrations using the most advanced methods of nonlinear vibrational spectroscopy, including femtosecond two-dimensional infrared spectroscopy. He shows for the first time that the structure of interfacial water undergoes very limited fluctuations on a 300 fs time scale and that the lifetimes of hydrogen bonds with the phospholipid are typically longer than 10 ps. Such properties originate from the steric hindrance of water fluctuations at the interface and the orienting action of strong electric fields from the phospholipid head group dipoles. In an extensive series of additional experiments, the vibrational lifetimes of the different vibrations and the processes of energy dissipation are elucidated in detail.
This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles-highlighting the interfacial phenomena and the corresponding interactions between particles. The book's central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between aggregates. It is illustrated how such knowledge may significantly enhance the characterisation of colloidal suspensions. The final part of the book refers to the information, ideas and concepts already presented in order to address technical aspects of the preparation of colloidal suspensions-in particular the performance of relevant dispersion techniques and the stability of colloidal suspensions.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes for example,such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. Photochemistry reviews photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, Photochemistry comprises sections sub-divided by chromophore and reaction type, and also a comprehensive section on polymer photochemistry.Throughout, emphasis is placed on useful applications of photochemistry.
Describes the relations between reactions in chemical and biochemical systems with special emphasis to high selective oxidation reactions by hydrogen peroxide.
Polyatomic Ion Dissociative Recombination; D.R. Bates. Recent Developments and Perspectives in the Treatment of Dissociative Recombination and Related Processes; A. Guisti-Suzor, et al. Electron-Ion Continuum-Continuum Mixing in Dissociative Recombination; S.L. Guberman. Recent Merged Beam Investigations of Hydrogen Molecular Ion Recombination; J.B.A. Mitchell, et al. Recent Flowing Afterglow Measurements; B.R. Rowe. Recombination of Cluster Ions; R. Johnsen. Associative Ionization of Hydrogen; F. Brouillard, X. Urbain. Resonant Theory of Dissociative Attachment; I.I. Fabrikant. Dissociative Recombination in Planetary Ionospheres; J.L. Fox. Chemistry of Supernova 1987a; A. Dalgarno. Factoring Sequences of Dynamic Processes in a Single Collision; F.H. Mies. Dissociative Electron Attachment to TransitionMetal Hydrides; T.M. Miller, et al. Electron Impact Dissociative Excitation of Molecular Ions; A.E. Orel. 17 additional articles. Index.
This book underscores the essential principles of photocatalysis and provides an update on its scientific foundations, research advances, and current opinions, and interpretations. It consists of an introduction to the concepts that form the backbone of photocatalysis, from the principles of solid-state chemistry and physics to the role of reactive oxidizing species. Having recognised the organic link with chemical kinetics, part of the book describes kinetic concepts as they apply to photocatalysis. The dependence of rate on the reaction conditions and parameters is detailed, the retrospective and prospective aspects of the mechanism of photocatalysis are highlighted, and the adsorption models, photocatalytic rate expressions, and kinetic disguises are examined. This book also discusses the structure, property, and activity relationship of prototypical semiconductor photocatalysts and reviews how to extend their spectral absorption to the visible region to enable the effective use of visible solar spectrum. Lastly, it presents strategies for deriving substantially improved photoactivity from semiconductor materials to support the latest applications and potential trends.
This book focuses on a variety of photochemical reaction processes in the crystalline state. The crystalline state reaction is a new category of solid state reaction, in which a reaction occurs with retention of the single crystal form. The whole reaction processes were observed directly by X-ray and neutron diffractions. In this book, not only the structures of metastable intermediates, such as radicals, carbenes, and nitrenes, but also the unstable species of photochromic compounds and photo-excited structures are shown with colored figures of the molecular structures, with more than 200 figures. The book is an indispensable resource not only for organic, inorganic and physical chemists but also for graduate students, as it furnishes more than 300 references.
The unfortunate and serious accident at the nuclear power plants in Fukushima, Japan caused by the earthquake and tsunami in March 2011 dealt Japan a serious blow. Japan was nearly deprived of electric power when in response to the accident all nuclear reactors in Japan were shut down. This shortage further accelerated the introduction of renewable energies. This book surveys the new materials and approaches needed to use nanotechnology to introduce the next generation of advanced lithium batteries, currently the most promising energy storage devices available. It provides an overview of nanotechnology for lithium batteries from basic to applied research in selected high technology areas. The book especially focuses on near-term and future advances in these fields. All contributors to this book are expert researchers on lithium batteries.
Preparation of Liquid Crystalline Elastomers, by F. Brommel, D. Kramer, H. Finkelmann Applications of Liquid Crystalline Elastomers, by C. Ohm, M. Brehmer und R. Zentel Liquid Crystal Elastomers and Light, by Peter Palffy-Muhoray Electro-Opto-Mechanical Effects in Swollen Nematic Elastomers, by Kenji Urayama The Isotropic-to-Nematic Conversion in Liquid Crystalline Elastomers, by Andrija Lebar, George Cordoyiannis, Zdravko Kutnjak und Bostjan Zalar Order and Disorder in Liquid-Crystalline Elastomers, by Wim H. de Jeu und Boris I. Ostrovskii"
Experimental advances in helium atom scattering spectroscopy over the last forty years have allowed the measurement of surface phonon dispersion curves of more than 200 different crystal surfaces and overlayers of insulators, semiconductors and metals. The first part of the book presents, at a tutorial level, the fundamental concepts and methods in surface lattice dynamics, and the theory of atom-surface interaction and inelastic scattering in their various approximations, up to the recent electron-phonon theory of helium atom scattering from conducting surfaces. The second part of the book, after introducing the experimentalist to He-atom spectrometers and the rich phenomenology of helium atom scattering from corrugated surfaces, illustrates the most significant experimental results on the surface phonon dispersion curves of various classes of insulators, semiconductors, metals, layered crystals, topological insulators, complex surfaces, adsorbates, ultra-thin films and clusters. The great potential of helium atom scattering for the study of atomic scale diffusion, THz surface collective excitations, including acoustic surface plasmons, and the future prospects of helium atom scattering are presented in the concluding chapters. The book will be valuable reading for all researchers and graduate students interested in dynamical processes at surfaces.
This Springer Laboratory volume is a practical guide for scientists and students dealing with the measurement of mechanical properties of polymers at the nanoscale through AFM force-distance curves. In the first part of the book the reader will find a theoretical introduction about atomic force microscopy, focused on force-distance curves, and mechanical properties of polymers. The discussion of several practical issues concerning the acquisition and the interpretation of force-distance curves will help scientists starting to employ this technique. The second part of the book deals with the practical measurement of mechanical properties of polymers by means of AFM force-distance curves. Several "hands-on" examples are illustrated in a very detailed manner, with particular attention to the sample preparation, data analysis, and typical artefacts. This section gives a complete overview about the qualitative characterization and quantitative determination of the mechanical properties of homogeneous polymer samples, polymer brushes, polymer thin films, confined polymer samples, model blends and microstructured polymer blends through AFM force-distance curves. The book also introduces to new approaches and measurement techniques, like creep compliance and force modulation measurements, pointing out approximations, limitations and issues requiring further confirmation.
This book addresses primarily the engineer in industrial process development, the research chemist in academia and industry, and the graduate student intending to become a reaction engineer. In industry, competitive pressures put a premium on scale-up by large factors to cut development time. To be safe, such development should be based on "fundamental" kinetics that reflect the elementary steps of which the reaction consists. The book forges fundamental kinetics into a practical tool by presenting new, effective methods for elucidation of mechanisms and reduction of complexity without unacceptable sacrifice in accuracy: fewer equations (lesser computational load), fewer coefficients (fewer experiment to determine them). For network elucidation, new rules relating network configurations to observable kinetic behaviour allow incorrect networks to be ruled out by whole classes instead of one by one. For modelling, general equations and algorithms are given from which equations for specific networks can be recovered by simple substitutions.
After his first book on the topic "Specific Intermolecular Interactions of Organic Compounds", Baev extends in this book the development of the thermodynamic theory of specific intermolecular interactions to a wider spectrum of nitrogenated and bioorganic compounds: amino alcohols, amino acids, peptides and urea derivatives. The fundamentals of an unconventional approach to the theory of H-bonding and specific interactions are formulated based on a concept of penta- coordinated carbon atoms. New types of hydrogen bonds and specific interactions are substantiated and on the basis of the developed methodology their energies are determined. The new concept of the extra stabilizing effect of isomeric methyl groups on the structure and stability of nitrogenated organic molecules and bioorganic compounds is introduced and the destabilization action on specific interactions is outlined.
Rasmus Brogaard's thesis digs into the fundamental issue of how the
shape of a molecule relates to its photochemical reactivity. This
relation is drastically different from that of ground-state
chemistry, since lifetimes of excited states are often comparable
to or even shorter than the time scales of conformational changes.
Combining theoretical and experimental efforts in femto-second
time-resolved photoionization Rasmus Brogaard finds that a
requirement for an efficient photochemical reaction is the
prearrangement of the constituents in a reactive conformation.
This book of general analytical chemistry - as opposed to instrumental analysis or separation methods - in aqueous solutions is focuses on fundamentals, which is an area too often overlooked in the literature. Explanations abound of the chemical and physical principles of different operations of chemical analysis in aqueous solutions. Once these principle are firmly established, numerous examples of applications are also given.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors.
This textbook is the result of the enhancement of several courses on non-equilibrium statistics, stochastic processes, stochastic differential equations, anomalous diffusion and disorder. The target audience includes students of physics, mathematics, biology, chemistry, and engineering at undergraduate and graduate level with a grasp of the basic elements of mathematics and physics of the fourth year of a typical undergraduate course. The little-known physical and mathematical concepts are described in sections and specific exercises throughout the text, as well as in appendices. Physical-mathematical motivation is the main driving force for the development of this text. It presents the academic topics of probability theory and stochastic processes as well as new educational aspects in the presentation of non-equilibrium statistical theory and stochastic differential equations.. In particular it discusses the problem of irreversibility in that context and the dynamics of Fokker-Planck. An introduction on fluctuations around metastable and unstable points are given. It also describes relaxation theory of non-stationary Markov periodic in time systems. The theory of finite and infinite transport in disordered networks, with a discussion of the issue of anomalous diffusion is introduced. Further, it provides the basis for establishing the relationship between quantum aspects of the theory of linear response and the calculation of diffusion coefficients in amorphous systems.
This book is the translated and commented autobiography of Wilhelm Ostwald (1853-1932), who won the Nobel Prize for Chemistry in 1909. It is the first translation of the German original version "Lebenslinien: Eine Selbstbiographie," published by Ostwald in 1926/27, and has been painstakingly translated. The book includes comments and explanations, helping readers to understand Ostwald's text in the historical context of Germany at the beginning of the 20th century.In his autobiography, Ostwald describes his impressive research career and his life from his own personal view. Readers will find information on how Ostwald immortalized himself through his research on catalysis, chemical equilibria, technical chemistry, and especially as one of the founders of modern physical chemistry. His broad interests in science, ranging from philosophy to the theory of colors and the idea of a universal scientific language are further remarkable aspects covered.This work will appeal to a broad audience of contemporary scientists: Wilhelm Ostwald has been tremendously influential for the development of chemistry and science, and many of today's best-known international scientific schools can be traced back to Ostwald's students. Ostwald was active in Germany and what is now Latvia and Estonia, while also travelling to the USA, England and France. In his discussions and analyses of the working conditions of the time, readers will find many issues reflected that continue to be of relevance today.
"Polymeric and Nanostructured Macromolecules" presents the recent advances made in the synthesis, characterization, and applications of polymeric macromolecules. This book provides an excellent overview of the recent breakthroughs in the science of macromolecules, with an emphasis on nanostructured macromolecules and the perspectives that these versatile materials offer to different fields such as optoelectronics and biotechnology. Advanced undergraduate, graduate students and researchers alike will find the topics concerning physical and chemical properties of advanced macromolecular materials of great interest.
This text contains a collection of lectures presented at the NATO ASI on "Frontiers of Chemical Dynamics" in Kemer, Turkey. Even though these articles include and sometimes emphasize the latest developments in corresponding research fields, they all share a common denominator, namely, they are intended as lectures for students at various levels as well as scientists entering a new field. It can, therefore, be used as a supplementary textbook for graduate courses on chemical dynamics. The various aspects of dynamical problems are discussed by experimentalists, theoreticians and those who carry out "numerical experiments", although it is not always easy to distinguish between theory and experiment. Most of the topics discussed offer different approaches to the same problem which will give an overall picture. |
You may like...
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,238
Discovery Miles 52 380
Molecular Physical Chemistry for…
Florin Emilian Danes, Silvia Danes, …
Hardcover
R2,522
Discovery Miles 25 220
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,787
Discovery Miles 47 870
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,216
Discovery Miles 32 160
Controlling Maillard Pathways To…
Donald Mottram, Andrew Taylor
Hardcover
R5,401
Discovery Miles 54 010
Ionic Liquids - Current State and Future…
Mark B. Shiflett, Aaron M. Scurto
Hardcover
R3,983
Discovery Miles 39 830
|