Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Physical chemistry > General
Engel and Reid's Quantum Chemistry and Spectroscopy gives students a contemporary and accurate overview of physical chemistry while focusing on basic principles that unite the sub-disciplines of the field. The Third Edition continues to emphasize fundamental concepts and presents cutting-edge research developments that demonstrate the vibrancy of physical chemistry today. MasteringChemistry(r) for Physical Chemistry - a comprehensive online homework and tutorial system specific to Physical Chemistry - is available for the first time with Engel and Reid to reinforce students' understanding of complex theory and to build problem-solving skills throughout the course.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
Human Biochemistry, Second Edition provides a comprehensive, pragmatic introduction to biochemistry as it relates to human development and disease. Here, Gerald Litwack, award-wining researcher and longtime teacher, discusses the biochemical aspects of organ systems and tissue, cells, proteins, enzymes, insulins and sugars, lipids, nucleic acids, amino acids, polypeptides, steroids, and vitamins and nutrition, among other topics. Fully updated to address recent advances, the new edition features fresh discussions on hypothalamic releasing hormones, DNA editing with CRISPR, new functions of cellular prions, plant-based diet and nutrition, and much more. Grounded in problem-driven learning, this new edition features clinical case studies, applications, chapter summaries, and review-based questions that translate basic biochemistry into clinical practice, thus empowering active clinicians, students and researchers.
Dear Readers, Since the ground-breaking, Nobel-prize crowned work of Heeger, MacDiarmid, and Shirakawa on molecularly doped polymers and polymers with an alternating bonding structure at the end of the 1970s, the academic and industrial research on hydrocarbon-based semiconducting materials and devices has made encouraging progress. The strengths of semiconducting polymers are currently mainly unfolding in cheap and easily assembled thin ?lm transistors, light emitting diodes, and organic solar cells. The use of so-called "plastic chips" ranges from lightweight, portable devices over large-area applications to gadgets demanding a degree of mechanical ?exibility, which would overstress conventionaldevices based on inorganic,perfect crystals. The ?eld of organic electronics has evolved quite dynamically during the last few years; thus consumer electronics based on molecular semiconductors has gained suf?cient market attractiveness to be launched by the major manufacturers in the recent past. Nonetheless, the numerous challenges related to organic device physics and the physics of ordered and disordered molecular solids are still the subjects of a cont- uing lively debate. The future of organic microelectronics will unavoidably lead to new devi- physical insights and hence to novel compounds and device architectures of - hanced complexity. Thus, the early evolution of predictive models and precise, computationally effective simulation tools for computer-aided analysis and design of promising device prototypes will be of crucial importance.
Proceedings of the NATO Advanced Study Institute, Cargese, Corsica, France, 18-31 July, 1988"
Applied Photochemistry encompasses the major applications of the chemical effects resulting from light absorption by atoms and molecules in chemistry, physics, medicine and engineering, and contains contributions from specialists in these key areas. Particular emphasis is placed both on how photochemistry contributes to these disciplines and on what the current developments are. The book starts with a general description of the interaction between light and matter, which provides the general background to photochemistry for non-specialists. The following chapters develop the general synthetic and mechanistic aspects of photochemistry as applied to both organic and inorganic materials, together with types of materials which are useful as light absorbers, emitters, sensitisers, etc. for a wide variety of applications. A detailed discussion is presented on the photochemical processes occurring in the Earth's atmosphere, including discussion of important current aspects such as ozone depletion. Two important distinct, but interconnected, applications of photochemistry are in photocatalytic treatment of wastes and in solar energy conversion. Semiconductor photochemistry plays an important role in these and is discussed with reference to both of these areas. Free radicals and reactive oxygen species are of major importance in many chemical, biological and medical applications of photochemistry, and are discussed in depth. The following chapters discuss the relevance of using light in medicine, both with various types of phototherapy and in medical diagnostics. The development of optical sensors and probes is closely related to diagnostics, but is also relevant to many other applications, and is discussed separately. Important aspects of applied photochemistry in electronics and imaging, through processes such as photolithography, are discussed and it is shown how this is allowing the increasing miniaturisation of semiconductor devices for a wide variety of electronics applications and the development of nanometer scale devices. The final two chapters provide the basic ideas necessary to set up a photochemical laboratory and to characterise excited states. This book is aimed at those in science, engineering and medicine who are interested in applying photochemistry in a broad spectrum of areas. Each chapter has the basic theories and methods for its particular applications and directs the reader to the current, important literature in the field, making Applied Photochemistry suitable for both the novice and the experienced photochemist.
This monograph presents an integrated perspective of the wide range of phenomena and processes applicable to the study of transport of species in porous materials. In order to formulate the entire range of porous media and their uses, this book gives the basics of continuum mechanics, thermodynamics, seepage and consolidation and diffusion, including multiscale homogenization methods. The particular structure of the book has been chosen because it is essential to be aware of the true properties of porous materials particularly in terms of nano, micro and macro mechanisms. This book is of pedagogical and practical importance to the fields covered by civil, environmental, nuclear and petroleum engineering and also in chemical physics and geophysics as it relates to radioactive waste disposal, geotechnical engineering, mining and petroleum engineering and chemical engineering.
Photodynamic Therapy: From Theory to Application brings attention to an exceptional treatment strategy, which until now has not achieved the recognition and breadth of applications it deserves. The authors, all experts and pioneers in their field, discuss the history and basic principles of PDT, as well as the fundamentals of the theory, methods, and instrumentation of clinical diagnosis and treatment of cancer. Non-oncological applications such as the use of PDT in control of parasites and noxious insects are also discussed. This book serves as a standard reference for researchers and students at all levels, clinical specialists interested in the topic and those in industry exploring new areas for development. A comprehensive exposition of both the theory and application of PDT, this book fills the gaps in the current literature by bringing together both basic understanding of the process of PDT and an expanded vision of its applications.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
This volume is the first of a set of two which contain the invited lectures given at the international seminar of the same title held at the Centre de Mecanique Ondulatoire Appliquee du Centre National de la Recherche Scientifique in Paris (France) from October 1983 to May 1985. They are intended to provide a survey of topics of current interest relative to the structure and the dynamics of molecular systems. The papers have been selected on the basis of their relevance to the following four topics: i) molecular conformations and transformations; ii) molecular relaxation and motion; iii) charge, spin and momentum distributions in molecular solids; iv) collective phenomena in condensed matter. The first volume deals f)1ostly with the first two topics, the second volume mostly with the last two. Each volume consists of about fifteen self contained, reference contributions covering recent achievements in active branches of molecular physics and physical chemistry. The first four papers of the present volume deal with theoretical aspects of structure and reactivity problems, with particular attention being paid to topology considerations, which have joined symmetry con siderations as an important tool in approaching chemistry problems. The treatment of nuclear probability density distributions is performed on a model basis for a simple system, even though it has come to the attention of theoreticians through experimental results for complex systems."
Gas phase ion chemistry is a broad field that has many applications
and which encompasses various branches of chemistry and physics.
"Advances in Gas Phase Ion Chemistry, Volume 4, " describes
innovative ways of studying reactions as well as the application of
unique apparatuses to problems in this field. This volume contains
a series of chapters, in the general area of gas phase chemistry
and physics, which are at the cutting edge of research.
Handbook of Thermoset Plastics, Fourth Edition provides complete coverage of the chemical processes, manufacturing techniques and design properties of each polymer, along with its applications. This new edition has been expanded to include the latest developments in the field, with new chapters on radiation curing, biological adhesives, vitrimers, and 3D printing. This detailed handbook considers the practical implications of using thermoset plastics and the relationships between processing, properties and applications, as well as analyzing the strengths and weakness of different methods and applications. The aim of the book is to help the reader to make the right decision and take the correct action on the basis of informed analysis - avoiding the pitfalls the authors' experience has uncovered. In industry, the book supports engineers, scientists, manufacturers and R&D professionals working with plastics. The information included will also be of interest to researchers and advanced students in plastics engineering, polymer chemistry, adhesives and coatings.
This volume represents the proceedings of an international symposium on sample preparation, held at the University of Surrey, and jointly organised by the Chromatographic Society and the Robens Institute. The Chromatographic Society is the only international organisation devoted to the promotion of, and the exchange of information on, all aspects of chromatography and related techniques. With the introduction of gas chromatography in 1952, the Hydrocarbon Chemistry Panel of the Hydrocarbon Research Group of the Institute of Petroleum, recognising the potential of this new technique, set up a Committee under Dr S.F. Birch to organise a symposium on "Vapor Phase Chromatography" which was held in London in June 1956. Almost 400 delegates attended this meeting and success exceeded all expectation. It was to afford discussion of immediately apparent that there was a need for an organised forum development and application of the method and, by the end of the year, the Gas Chromatog raphy Discussion Group had been formed under the Chairmanship of Dr A.T. James with D.H. Desty as Secretary. Membership of this Group was originally by invitation only, but in deference to popular demand, the Group was opened to all willing to pay the modest sub scription of one guinea and in 1957 A.J.P. Martin, Nobel Laureate, was elected inaugural Chairman of the newly-expanded Discussion Group."
A renewed interest in aliphatic polyesters has resulted in developing materials important in the biomedical and ecological fields. Mainly materials such as PLA and PCL homopolymers have so far been used in most applications. There are many other monomers which can be used. Different molecular structures give a wider range of physical properties as well as the possibility of regulating the degradation rate. By using different types of initiators and catalysts, ring-opening polymerization of lactones and lactides provides macromolecules with advanced molecular architectures. In the future, new degradable polymers should be able to participate in the metabolism of nature. Some examples of novel polymers with inherent environmentally favorable properties such as renewability and degradability and a series of interesting monomers found in the metabolisms and cycles of nature are given.
This book is dedicated to gas-phase thermal reactions which take place in engines, burners, and industrial reactors for the production of mechanical or thermal energy, for the incineration of pollutants, or for the manufacture of chemicals. It also studies their effect on the environment: fires, explosions, tropospheric pollution, the greenhouse effect, and holes in the ozone layer. After a short reminder of the concepts and laws of thermodynamics, and of chemical and physical kinetics, the book suggests a methodology for the kinetic modelling of these reactions: generation and reduction of reaction mechanisms, estimation of kinetic data of elementary reactions, estimation of the thermodynamic data and transport data of molecules and free radicals, and analysis and validation of mechanisms by comparison of calculated results with the experimental results obtained using laboratory reactors. The models thus generated carry all the information necessary to allow them to be incorporated into computer programs for the calculation of reactors or of the fluid dynamics of reacting gases. Tables of numerical data and a list of computer programs and URLs complete the book.
Protein glycosylation is now acknowledged as a major posttranslational modification with significant effects on protein folding, conformation distri- bution, stability, and activity. The added oligosaccharide chains are large and diverse and have specific recognition motifs important in many aspects of cell interactions and regulation. As such, there is a growing need to communicate the analytical methods of the specialist carbohydrate chemist, biochemist, and physicochemist to protein experts and the pharmaceutical industry. Other areas that come under the influence of the glycosciences are DNA interactions with ubiquitous saccharide-containing antibiotics and antitumor drugs; inhibitors of viral infection; bacterial, mycobacterial, and parasite antigens; glycolipids; glycophosphatidylinositol protein membrane anchors; and (glyco)protein- proteoglycan interactions. Compared to the first edition of this book, Glycopro- tein Analysis in Biomedicine, less emphasis is given to biomedical aspects, but these chapters are still pertinent today. The significant differences in the con- tent relate to advances in analysis relevant to biotechnology; for example, the production of recombinant glycoproteins and other therapeutics. It must also not be forgotten that the methods here described in Glycoanalysis Protocols are relevant to exploiting the commercial potential of carbohydrates in fields related to agriculture, food, and the domestic and chemical industries. The emphasis of the book remains in bringing the glycosciences into mainstream biochemistry. The analytical methods covered in Glycoanalysis Protocols are the re- sult of experts translating their life's works into easy-to-follow recipes.
This book tackles the problematic relationship between Platonic philosophy and Romantic poetry, between the intellect and the emotions. Drawing on contemporary critical theory, especially hermeneutics and deconstruction, the author shows that a dialogue between thinking and poetizing is possible. The volume yields many new insights into both Platonic and Romantic texts and forms an important work for scholars and students of Greek philosophy, Romantic literature and critical theory.
This book provides an interdisciplinary presentation of the current knowledge of pattern formation in complex system, with sufficiently many details, tools, and concrete examples to be useful for the graduate student or scientist entering this area of research.
This book presents an up to date review of many aspects of Interfacial Electrochemistry and points direction of future developments. Traditional routes for the study of the electrochemical interface are reviewed, critically discussed and the available experimental data is analysed. Complementary information is presented as obtained from the sucessful application of the various in-situ reflectance spectroscopies. The use of single crystal face electrodes to study the electrochemical interface is emphasized with particular relevan- ce to the technique to prepare clean surfaces. Some relevant re- sults obtained for single crystal face electrodes are presented. This book presents also the techniques to study other interfaces such-as the ionic-solution, immiscible liquid-liquid and gas-so- lid interfaces. The information gained 'is put in parallel to the solid-electrolyte solution interface. More specific aspects of the electrochemical interface are covered with chapters on phase-transitions occuring on 2D ad- sorbed layers and on electrochemical kinetics where the dependen- ce of the electrochemical rate parameters upon the solvent struc- ture and electrode material is emphasized. The final chapters reviews of the present state of solvent models interfaces and the recently developed theories of the eleGBP trochemical interfaces in which an association is made of models for the metal with the models for the electrolyte solution. This book is a result of a NATO A. S. 1. on "Trends in Interfacial Electrochemistry", held in Viana do Castelo from 2 to 13th July 1984 which brought together experts of the above men- tioned aspects of Interfacial Electrochemistry.
David I.A. Millar's thesis explores the effects of extreme conditions on energetic materials. His study identifies and structurally characterises new polymorphs obtained at high pressures and/or temperatures. The performance of energetic materials (pyrotechnics, propellants and explosives) can depend on a number of factors including sensitivity to detonation, detonation velocity, and chemical and thermal stability. Polymorphism and solid-state phase transitions may therefore have significant consequences for the performance and safety of energetic materials. In order to model the behaviour of these important materials effectively under operational conditions it is essential to obtain detailed structural information at a range of temperatures and pressures.
Volume 16 marks the beginning of a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. This volume is being followed by Volume 17 with the subtitle Structure Computation and Dynamics in Protein NMR. Volumes 16 and 17 present some of the recent, significant advances in biomolecular NMR field with emphasis on developments during the last five years. We are honored to have brought together in these volumes some of the world's foremost experts who have provided broad leadership in advancing this field. Volume 16 contains advances in two broad categories: the first, Large Proteins, Complexes, and Membrane Proteins, and second, Pulse Methods. Volume 17, which will follow covers major advances in Computational Methods, and Structure and Dynamics. In the opening chapter of Volume 16, Marius Clore and Angela Gronenborn give a brief review of NMR strategies including the use of long range restraints in the structure determination of large proteins and protein complexes. In the next two chapters, Lewis Kay and Ron Venters and their collaborators describe state-of-t- art advances in the study of perdeuterated large proteins. They are followed by Stanley Opella and co-workers who present recent developments in the study of membrane proteins. (A related topic dealing with magnetic field induced residual dipolar couplings in proteins will appear in the section on Structure and Dynamics in Volume 17).
Imposingly thick text derived from a one-semester course intended to acquaint advanced undergraduate (and beginning graduate) students with the concepts and methods of linear mathematics. Though physics is referred to in the title, the book is in almost every organizational and notational respect
Extracellular MRI and X-ray contrast agents are characterized by their phar- cokinetic behaviour.After intravascular injection their plasma-level time curve is characeterized by two phases. The agents are rapidly distributed between plasma and interstitial spaces followed by renal elimination with a terminal half-live of approximatly 1-2 hours. They are excreted via the kidneys in unchanged form by glomerular filtration. Extracellular water-soluble contrast agents to be applied for X-ray imaging were introduced into clinical practice in 1923. Since that time they have proved to be most valuable tools in diagnostics.They contain iodine as the element of choice with a sufficiently high atomic weight difference to organic tissue. As positive contrast agents their attenuation of radiation is higher compared with the attenuation of the surrounding tissue. By this contrast enhancement X-ray diagnostics could be improved dramatically. In 2,4,6-triiodobenzoic acid derivatives iodine is firmly bound. Nowadays diamides of the 2,4,6-triiodo-5-acylamino-isophthalic acid like iopromide (Ultravist, Fig. 1) are used as non-ionic (neutral) X-ray contrast agents in most cases [1].
Focusing on the state of the art of electrode process chemistry, the contributors discuss a wide range of applications and provide coverage of advances in quantum mechanical theory of electron transfer and the mechanism of electrical passage through nerves and batteries for motor vehicles. Annotatio
The authors explain at length the principles of chemical kinetics and approaches to computerized calculations in modern software suites - mathcad and maple. Mathematics is crucial in determining correlations in chemical processes and requires various numerical approaches. Often significant issues with mathematical formalizations of chemical problems arise and many kinetic problems cant be solved without computers. Numerous problems encountered in solving kinetics calculations with detailed descriptions of the numerical tools are given. Special attention is given to electrochemical reactions, which fills a gap in existing texts not covering this topic in detail. The material demonstrates how these suites provide quick and precise behavior predictions for a system over time (for postulated mechanisms).Examples, i.e., oscillating and non-isothermal reactions, help explain the use of mathcad more efficiently. Also included are the results of authors' own research toward effective computations. |
You may like...
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,238
Discovery Miles 52 380
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,787
Discovery Miles 47 870
Introducing the Effective Mass of…
Petr Ptacek, Tomas Opravil, …
Hardcover
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,216
Discovery Miles 32 160
Controlling Maillard Pathways To…
Donald Mottram, Andrew Taylor
Hardcover
R5,401
Discovery Miles 54 010
Ionic Liquids - Current State and Future…
Mark B. Shiflett, Aaron M. Scurto
Hardcover
R3,983
Discovery Miles 39 830
Frontiers of Plasmon Enhanced…
Yukihiro Ozaki, George C. Schatz, …
Hardcover
R4,781
Discovery Miles 47 810
Frontiers of Plasmon Enhanced…
Yukihiro Ozaki, George C. Schatz, …
Hardcover
R4,789
Discovery Miles 47 890
|