![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > General
This book highlights the latest advances and outlines future trends in aqueous solvation studies from the perspective of hydrogen bond transition by charge injection, which reconciles the solvation dynamics, molecular nonbond interactions, and the extraordinary functionalities of various solutes on the solution bond network and properties. Focus is given on ionic and dipolar electrostatic polarization, O:H nonbond interaction, anti-HB and super-HB repulsion, and solute-solute interactions. Its target audience includes researchers, scientists, and engineers in chemistry, physics, surface and interface science, materials science and engineering.
This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles-highlighting the interfacial phenomena and the corresponding interactions between particles. The book's central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between aggregates. It is illustrated how such knowledge may significantly enhance the characterisation of colloidal suspensions. The final part of the book refers to the information, ideas and concepts already presented in order to address technical aspects of the preparation of colloidal suspensions-in particular the performance of relevant dispersion techniques and the stability of colloidal suspensions.
This book of general analytical chemistry - as opposed to instrumental analysis or separation methods - in aqueous solutions is focuses on fundamentals, which is an area too often overlooked in the literature. Explanations abound of the chemical and physical principles of different operations of chemical analysis in aqueous solutions. Once these principle are firmly established, numerous examples of applications are also given.
This book underscores the essential principles of photocatalysis and provides an update on its scientific foundations, research advances, and current opinions, and interpretations. It consists of an introduction to the concepts that form the backbone of photocatalysis, from the principles of solid-state chemistry and physics to the role of reactive oxidizing species. Having recognised the organic link with chemical kinetics, part of the book describes kinetic concepts as they apply to photocatalysis. The dependence of rate on the reaction conditions and parameters is detailed, the retrospective and prospective aspects of the mechanism of photocatalysis are highlighted, and the adsorption models, photocatalytic rate expressions, and kinetic disguises are examined. This book also discusses the structure, property, and activity relationship of prototypical semiconductor photocatalysts and reviews how to extend their spectral absorption to the visible region to enable the effective use of visible solar spectrum. Lastly, it presents strategies for deriving substantially improved photoactivity from semiconductor materials to support the latest applications and potential trends.
This book addresses primarily the engineer in industrial process development, the research chemist in academia and industry, and the graduate student intending to become a reaction engineer. In industry, competitive pressures put a premium on scale-up by large factors to cut development time. To be safe, such development should be based on "fundamental" kinetics that reflect the elementary steps of which the reaction consists. The book forges fundamental kinetics into a practical tool by presenting new, effective methods for elucidation of mechanisms and reduction of complexity without unacceptable sacrifice in accuracy: fewer equations (lesser computational load), fewer coefficients (fewer experiment to determine them). For network elucidation, new rules relating network configurations to observable kinetic behaviour allow incorrect networks to be ruled out by whole classes instead of one by one. For modelling, general equations and algorithms are given from which equations for specific networks can be recovered by simple substitutions.
Preparation of Liquid Crystalline Elastomers, by F. Brommel, D. Kramer, H. Finkelmann Applications of Liquid Crystalline Elastomers, by C. Ohm, M. Brehmer und R. Zentel Liquid Crystal Elastomers and Light, by Peter Palffy-Muhoray Electro-Opto-Mechanical Effects in Swollen Nematic Elastomers, by Kenji Urayama The Isotropic-to-Nematic Conversion in Liquid Crystalline Elastomers, by Andrija Lebar, George Cordoyiannis, Zdravko Kutnjak und Bostjan Zalar Order and Disorder in Liquid-Crystalline Elastomers, by Wim H. de Jeu und Boris I. Ostrovskii"
The unfortunate and serious accident at the nuclear power plants in Fukushima, Japan caused by the earthquake and tsunami in March 2011 dealt Japan a serious blow. Japan was nearly deprived of electric power when in response to the accident all nuclear reactors in Japan were shut down. This shortage further accelerated the introduction of renewable energies. This book surveys the new materials and approaches needed to use nanotechnology to introduce the next generation of advanced lithium batteries, currently the most promising energy storage devices available. It provides an overview of nanotechnology for lithium batteries from basic to applied research in selected high technology areas. The book especially focuses on near-term and future advances in these fields. All contributors to this book are expert researchers on lithium batteries.
Volume 2 of Formulation Science and Technology is a survey of the different types of formulations used in the chemical industry and offers numerous real-world examples of foams, gels, latexes etc. It offers in-depth explanations for research scientists, universities, and industry practitioners looking for a complete understanding of which type formulation works best for a certain application and why.
This book describes the rational design, development and application of nucleic acid amplification strategies for biosensing, bioimaging and biomedicine. It consists of fifteen chapters demonstrating the use of these strategies in various areas, including fluorescence techniques, Chemiluminescence biosensors, electrochemiluminescence biosensors, colorimetric assays, surface plasmon resonance technologies, electrochemical DNA sensors, photoelectrochemical biosensor, nanopore sensors, quartz crystal microbalance, fluorescence imaging, surface-enhanced Raman spectroscopy, in vitro and in vivo metal ions detection, theranostics and microdroplet chips. Offering a collection of reviews illustrating the latest advances in biochemical analysis and therapeutics, the book shares valuable insights into current challenges and future prospects, making it a valuable resource for a wide readership in the various fields of biosensing, bioimaging and biomedicine.
This thesis focuses on the bottom-up design, construction and operation of supramolecular systems capable of behaving as devices and machines on the molecular scale, which is a topic of great interest in nanoscience and a fascinating challenge in nanotechnology. In particular, the systems investigated here include: polyviologen dendrimers capable of behaving as hosts and chargestoring devices; molecular machines based on pseudorotaxanes/rotaxanes and operated by photoinduced proton transfer, or photoisomerization reactions; and a simple unimolecular multiplexer/demultiplexer. The systems have been characterized using a variety of techniques including absorption and emission spectra, laser flash photolysis, NMR spectroscopy, electrochemical experiments, stopped flow measurements. This research addresses a large number of open problems in the nanosciences, dealing with a wide range of the most advanced applications of supramolecular systems.
The study of fluctuations in statistical physics has a long history, and a general theory is well established, connecting fluctuations to response properties of equilibrium systems. Remarkably, this framework fails as soon as some current is flowing across the system, driving it out of equilibrium. The presence of currents is quite common in nature and produces rich phenomena which are far from being included in a general framework. This thesis focuses on this general problem by studying different models such as granular materials and systems exhibiting anomalous diffusion and shows how the generalized response techniques can be successfully used to catch the relevant degrees of freedom that drive the systems out of equilibrium. This study paves the way to the use of the generalized fluctuation relations in an operative way, in order to extract information from a non-equilibrium system and to build the corresponding phenomenological theory.
"Polymeric and Nanostructured Macromolecules" presents the recent advances made in the synthesis, characterization, and applications of polymeric macromolecules. This book provides an excellent overview of the recent breakthroughs in the science of macromolecules, with an emphasis on nanostructured macromolecules and the perspectives that these versatile materials offer to different fields such as optoelectronics and biotechnology. Advanced undergraduate, graduate students and researchers alike will find the topics concerning physical and chemical properties of advanced macromolecular materials of great interest.
After his first book on the topic "Specific Intermolecular Interactions of Organic Compounds", Baev extends in this book the development of the thermodynamic theory of specific intermolecular interactions to a wider spectrum of nitrogenated and bioorganic compounds: amino alcohols, amino acids, peptides and urea derivatives. The fundamentals of an unconventional approach to the theory of H-bonding and specific interactions are formulated based on a concept of penta- coordinated carbon atoms. New types of hydrogen bonds and specific interactions are substantiated and on the basis of the developed methodology their energies are determined. The new concept of the extra stabilizing effect of isomeric methyl groups on the structure and stability of nitrogenated organic molecules and bioorganic compounds is introduced and the destabilization action on specific interactions is outlined.
"Fundamental Aspects of Plasma Chemical Physics - Thermodynamics" develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics. The next books will discuss transport and kinetics. "
Volume 15 in this series continues the voyage of discovery started almost a decade ago. Chapter 98 adds significantly to an evaluation of systematic, experimental low-temperature studies of the ambivalent behaviours of cerium (ferromagnetism, antiferromagnetism, spin glass, superconductivity etc.) which depend upon its environment in materials. The conclusions arrived at should provide new data against which the theory can be advanced. The next chapter provides a review of rare earth carbides, emphasizing the thermodynamics, phase diagrams, crystal structures and physical properties. The binary rare earth carbides present an exceptionally wide range of compositions and structures both as solids and gas-phase molecules. Complex carbides with additional metal and non-metal components also receive attention. Metal-rich halides (i.e. compounds with an X/R ratio <2) are the subject of the next chapter. The compounds are classified according to their structure and chemical bonding characteristics and their electrical and magnetic properties are also reviewed. Chapter 101 deals with the preparation, structure, chemical and physical properties of heavy-metal fluoride glasses. Large amounts of rare earths can be added into these, and they possess a great potential for optical applications in the mid-infrared range as fiber optic glasses for communication and transmission of information, optical wave guides, fiber lasers and sensors. The following chapter explores the chemical kinetics of solvent and ligand exchange in aqueous lanthanide solutions. A wealth of tabulated information on rate and equilibrium constants is provided in textual and tabular form. Chapter 103 considers the fundamentally important reactions of the lanthanide ions with water. These interactions are discussed for both solids and solutions. The hydrated species are considered in detail for the aqueous solution, revealing the consequences of the lanthanide series sequence. The concluding chapter reviews macrocyclic complexes formed by rare earth and dioxouranium ions as templates. Synthetic trends and reactivity are considered as well as potential uses of these intriguing wrap-around structures.
How can we obtain tools able to process and exchange information at the molecular scale? In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, allowing the investigation of molecular computation in a biological environment.
"Adhesion of Cells, Viruses and Nanoparticles" describes the adhesion of cells, viruses and nanoparticles starting from the basic principles of adhesion science, familiar to postgraduates, and leading on to recent research results. The underlying theory is that of van der Waals forces acting between cells and substrates, embodied in the molecules lying at the surfaces, together with the geometry and elasticity of the materials involved. The first part describes the fundamental background to adhesion principles, including the phenomenology, the important equations and the modeling ideas. Then the mechanisms of adhesion are explored in the second part, including the elastic deformations of spheres and the importance of the energy of adhesion as measured in various tests. It is demonstrated that adhesion of cells is statistical and depends on Brownian movement and on the complex multiple contacts that can form as cells move around. Then, detailed chapters on cell adhesion, contact of viruses and aggregation of nanoparticles follow in Part 3. Finally, the last chapter looks to the future understanding of cell adhesion and points out some interesting directions of research, development and treatment of diseases related to these phenomena. This book is an ideal resource for researchers on adhesion molecules, receptors, cell and tissue culturing, virus infection, toxicity of nanoparticles and bioreactor fouling. It can also be used to support undergraduate and Masters level teaching courses. "This is a fascinating book and it is an invaluable resource for understanding particle-particle/surface adhesion at micro- and nano- scales. I intend to keep one for my future reference and highly recommend it to my students." (Prof. Zhibing Zhang, School of Chemical Engineering, University of Birmingham, UK)
Electrochemical processes are long known but are becoming increasingly important again, due to modern applications, such as electro-mobility or energy storage. Thus, electrochemistry is not only a topic for chemists and physicists, but also for technical engineers. This book addresses all aspects of electrochemistry, which are important in these days: electrodes, corrosion, interphases, processes, energy storage, analytical methods, and sensors.
This comprehensive database on physical properties of pure ionic
liquids (ILs)contains data collected from 269 peer-reviewed papers
in the period from 1982 to June 2008. There are more than 9,400
data points on the 29 kinds of physicochemical properties for 1886
available ionic liquids, from which 807 kinds of cations and 185
kinds of anions were extracted. This book includes nearlyall known
pure ILs and their known physicochemical properties through June
2008. In addition, the authors incorporate the main applications of
individual ILs and a large number of references.
This Springer Laboratory volume is a practical guide for scientists and students dealing with the measurement of mechanical properties of polymers at the nanoscale through AFM force-distance curves. In the first part of the book the reader will find a theoretical introduction about atomic force microscopy, focused on force-distance curves, and mechanical properties of polymers. The discussion of several practical issues concerning the acquisition and the interpretation of force-distance curves will help scientists starting to employ this technique. The second part of the book deals with the practical measurement of mechanical properties of polymers by means of AFM force-distance curves. Several "hands-on" examples are illustrated in a very detailed manner, with particular attention to the sample preparation, data analysis, and typical artefacts. This section gives a complete overview about the qualitative characterization and quantitative determination of the mechanical properties of homogeneous polymer samples, polymer brushes, polymer thin films, confined polymer samples, model blends and microstructured polymer blends through AFM force-distance curves. The book also introduces to new approaches and measurement techniques, like creep compliance and force modulation measurements, pointing out approximations, limitations and issues requiring further confirmation.
Fulleranes are a special class of carbon molecules derived from fullerenes whose double bonds are partially or at least theoretically fully saturated by hydrogen. The hydrogenation changes the chemical properties of fullerenes which can become susceptible to substitution reactions as opposed to addition reactions to the double bonds (present in common fullerenes). One of the most intriguing aspects of fulleranes is the fact that they have been thought to exist in the interstellar medium or even in certain circumstellar media. "Fulleranes: The Hydrogenated Fullerenes" presents the state of the art research, synthesis and properties of these molecules.This book also includes astrophysicists' and astrochemists' expectations regarding the presence of these molecules in space.
This book describes the fabrication of a frequency-based electronic tongue using a modified glassy carbon electrode (GCE), opening a new field of applying organic precursors to achieve nanostructure growth. It also presents a new approach to optimizing nanostructures by means of statistical analysis. The chemical vapor deposition (CVD) method was utilized to grow vertically aligned carbon nanotubes (CNTs) with various aspect ratios. To increase the graphitic ratio of synthesized CNTs, sequential experimental strategies based on response surface methodology were employed to investigate the crystallinity of CNTs. In the next step, glucose oxidase (GOx) was immobilized on the optimized multiwall carbon nanotubes/gelatin (MWCNTs/Gl) composite using the entrapment technique to achieve enzyme-catalyzed oxidation of glucose at anodic potentials, which was drop-casted onto the GCE. The modified GCE's performance indicates that a GOx/MWCNTs/Gl/GC electrode can be utilized as a glucose biosensor with a high direct electron transfer rate between GOx and MWCNTs/Gl. It was possible to use the fabricated biosensor as an electronic tongue thanks to a frequency-based circuit attached to the electrochemical cell. The results indicate that the modified GCE (with GOx/MWCNTs/Gl) holds promising potential for application in voltammetric electronic tongues.
Green Chemistry in Practice: Greener Material and Chemical Innovation through Collaboration collects together a unique set of case studies based on researchers' experiences in developing practical, green chemistry-driven solutions to industry problems as part of the Greener Solutions Program at Berkeley Center for Green Chemistry. Beginning with an introduction to green chemistry, the book goes on to provide an overview of the interdisciplinary approach taken by the Center, which aims to bring about a generational transformation toward the design and use of inherently safer chemicals and materials through research, teaching and outreach. This is followed by four detailed case studies revealing each step of the process involved in assessing and designing greener solutions to real-world problems in the fields of preservatives, textiles, additive manufacturing, and green energy. Drawing together the hands-on, practical experience of an interdisciplinary team from across academia and industry, Practice in Green Chemistry provides a unique insight into the practicalities of applying green chemistry principles in support of a global push toward a more sustainable world.
This book is the translated and commented autobiography of Wilhelm Ostwald (1853-1932), who won the Nobel Prize for Chemistry in 1909. It is the first translation of the German original version "Lebenslinien: Eine Selbstbiographie," published by Ostwald in 1926/27, and has been painstakingly translated. The book includes comments and explanations, helping readers to understand Ostwald's text in the historical context of Germany at the beginning of the 20th century.In his autobiography, Ostwald describes his impressive research career and his life from his own personal view. Readers will find information on how Ostwald immortalized himself through his research on catalysis, chemical equilibria, technical chemistry, and especially as one of the founders of modern physical chemistry. His broad interests in science, ranging from philosophy to the theory of colors and the idea of a universal scientific language are further remarkable aspects covered.This work will appeal to a broad audience of contemporary scientists: Wilhelm Ostwald has been tremendously influential for the development of chemistry and science, and many of today's best-known international scientific schools can be traced back to Ostwald's students. Ostwald was active in Germany and what is now Latvia and Estonia, while also travelling to the USA, England and France. In his discussions and analyses of the working conditions of the time, readers will find many issues reflected that continue to be of relevance today. |
You may like...
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,839
Discovery Miles 48 390
New and Future Developments in Microbial…
H. B Singh, Vijai G. Gupta, …
Hardcover
Ionic Liquids - Current State and Future…
Mark B. Shiflett, Aaron M. Scurto
Hardcover
R4,030
Discovery Miles 40 300
Ionic Liquids as Green Solvents…
Robin D. Rogers, Kenneth R. Seddon
Hardcover
R2,369
Discovery Miles 23 690
|