![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > General
This book explores fascinating topics at the edge of life, guiding the reader all the way from the relation of life processes to the second law of thermodynamics and the abundance of complex organic compounds in the universe through to the latest advances in synthetic biology and metabolic engineering. The background to the book is the extraordinary scientific adventures that are being undertaken as progress is made toward the creation of an artificial cell and the control of life processes. This journey involves input from research areas as diverse as genetic engineering, physical chemistry, and information theory. Life is to be thought of not only as a chemical event but also as an information process, with the genome a repository of information gathered over time through evolution. Knowledge of the mechanisms affecting the increase in complexity associated with evolutionary paths is improving, and there appear to be analogies with the evolution of the technologies promoting the development of our society. The book will be of wide interest to students at all levels and to others with an interest in the subject.
"Supercritical Fluid Technology for Energy and Environmental Applications" covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources including renewable materials using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations. A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine-tuned," making them suitable as organic solvents in a range of industrial and laboratory processes. This volume enables readers to select the most appropriate
medium for a specific situation. It helps instructors prepare
course material for graduate and postgraduate courses in the area
of chemistry, chemical engineering, and environmental engineering.
And it helps professional engineers learn supercritical fluid-based
technologies and use them in solving the increasingly challenging
environmental issues.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students
Until now the topic of gas dynamics has been included as a section in comprehensive textbooks on physical chemistry, or discussed at too high a level for undergraduate or graduate students. This book, based on courses given by the author in several countries, aims to fill this gap. To make the subject more accessible to students, there is a very strong emphasis on current applications of the theory. Part I introduces the kinetic theory of gases with relevance to molecular energies and intermolecular forces. Part II focuses on how these theories are used to explain real techniques and phenomena involving gases, allowing students to answer questions such as: 'How does a Laser work?' and 'What is a shock wave?' By stressing the practical implications, the book explains the theory of gas dynamics in a highly readable and comprehensible manner.
"Colloidal Foundations of Nanoscience" explores the theory and
concepts of colloid chemistry and its applications to nanoscience
and nanotechnology. It provides the essential conceptual and
methodological tools to approach nano-research issues. The authors
expertise in colloid science will contribute to the understanding
of basic issues involved in research. Each chapter covers a
classical subject of colloid science, in simple and straightforward
terms, and addresses its relevance to nanoscience before
introducing case studies.
This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological molecules, surfaces and nanostructures. At the same time it stresses the different ways to control the rates and pathways of reactive events in chemistry and biology. Particular emphasis is given to biological processes as an area where femtodynamics is becoming very useful for resolving the structural dynamics from techniques such as electron diffraction, and X-ray and IR spectroscopy. Finally, the latest developments in quantum control (in both theory and experiment) and the experimental pulse-shaping techniques are described.
This monograph covers the concept of cartesian tensors with the needs and interests of physicists, chemists and other physical scientists in mind. After introducing elementary tensor operations and rotations, spherical tensors, combinations of tensors are introduced, also covering Clebsch-Gordan coefficients. After this, readers from the physical sciences will find generalizations of the results to spinors and applications to quantum mechanics.
A Zahigkeitscharakterisierung mit Hilfe bruchmechanischer Konzepte.- A 1 Stand und Entwicklungstendenzen.- Neue Entwicklungen bei der bruchmechanischen Zahigkeitsbewertung von Kunststoffen und Verbunden.- JTJ-Konzept und dissipative Energien am Riss.- A 2 Experimentelle Methoden.- Bruchmechanische Messmethoden fur Polymere.- Einfluss von Prufkoerpergeometrie und Beanspruchungsbedingungen auf das Risswiderstandsverhalten von PVC und PP.- Prozedur zur Ermittlung des Risswiderstandsverhaltens mit dem instrumentierten Kerbschlagbiegeversuch.- Experimentelle Methoden zur Charakterisierung des Bruchverhaltens von HDPE-Rohren.- Die mechanische Charakterisierung von Polymeren und verstarkten Polymeren - Experimentelle Probleme und theoretische Hintergrunde.- A 3 Alternative Methoden.- Approximative Methoden zur Beschreibung des Risswiderstandsverhaltens im instrumentierten Kerbschlagbiegeversuch.- Anwendung der Normalisierungsmethode zur Ermittlung von Risswiderstandskurven an amorphen PVC-Werkstoffen.- Berechnung von J-R-Kurven aus Kraft-Durchbiegungs-Diagrammen auf Basis des Gelenkprutkoerpers.- J-TJ- und ?-T?-Stabilitatsdiagramme als Grundlage einer alternativen Methode zur Ermittlung von Instabilitatswerten aus Risswiderstandskurven.- B Morphologie-Eigenschafts-Korrelationen.- B 1 Homopolymerisate.- UEbermolekulare Struktur und mechanische Eigenschaften von isotaktischem Polypropylen.- Bruchverhalten und Morphologie von HDPE-Werkstoffen.- Zahigkeits- und Relaxationsverhalten von PMMA, PS und PC.- Crazing in amorphen Polymeren - Entstehung und Wachstum fibrillarer Crazes in der Nahe der Glasubergangstemperatur.- Einfluss der Temperatur und der Feuchtigkeit auf das Zahigkeitsverhalten von Polyamid.- B 2 Blends.- Zusammenhang zwischen Bruchverhalten und Morphologie von PE/PP-Blends.- Einfluss von Modifikatorkonzentration und Pruftemperatur auf das Zahigkeitsverhalten von modifizierten Polyamiden.- Morphologie und Zahigkeit von PP/EPR-Blends.- B 3 Copolymerisate.- Anwendung bruchmechanischer Werkstoffkenngroessen zur Optimierung des Zahigkeitsverhaltens von polymeren Mehrphasensystemen mit PP-Matrix.- Bruchmechanische Zahigkeitsbewertung des Rissinitiierungs-und Rissausbreitungsverhaltens von Ethylen-Propylen-Random-Copolymerisaten.- Risszahigkeitsverhalten von ABS-Werkstoffen.- ABS - Sproedbruch-Untersuchungen der Morphologie-Versagens-Beziehung.- C Hybride Methoden der Kunststoffprufung und Kunststoffdiagnostik.- Neue Moeglichkeiten der zerstoerungsfreien Charakterisierung von Polymeren.- Ermittlung des lokalen Deformationsverhaltens von Kunststoffen mittels Laserextensometrie.- D Technologische Prufverfahren.- Einsatzgrenzen von Kunststoffen und deren Verbunden unter Reibungs- und Verschleissbedingungen.- Modifizierung von Polymerwerkstoffen mit amorphem Kohlenstoff zur Optimierung des Reibungsverhaltens.- Mechanisches Schwingungsverhalten einer CFK-Verdichterschaufel.- E Biokompatible Werkstoffe und medizinische Implantate.- Polymere Werkstoffe in der orthopadischen Gelenkchirurgie.- Werkstoffparameter von funktionellen Prothesen im HNO-Bereich bei fortschreitender Degradation.- Mikrobielle Korrosion von pharyngo-trachealen Shuntventilen.- Werkstoff-und Deformationsverhalten von Stimmprothesen - Sensibilitat mechanischer Prufverfahren.- F Spezielle Werkstoffe.- Rissinitiierung, Verschleiss und molekulare Struktur von gefullten Vulkanisaten.- Charakterisierung des Deformationsverhaltens von modifiziertem Polymerbeton.- G Einsatz-und Anwendungsgrenzen.- Der Einfluss des biaxialen Spannungszustandes auf die Werkstoffkennwertfunktionen nichtlinear-viskoelastischer Werkstoffe.- Mediale Bestandigkeit von PP/GF-Verbunden.- Einfluss der medialen Auslagerung auf das Impactverhalten glasfaserverstarkter Kunststoffe.- Physikalische Alterung von Polypropylen.- Autorenindex.
This book introduces recent progress in biological energetics from ATP hydrolysis to molecular machineries. The role of water is now recognized to be essential in biological molecular energetics. Although energetics is a rather distant field to many biologists, any working models for protein machineries such as protein motors, transporters, and other enzymes must be consistent with their energetics. Therefore, the book is intended to help scientists build systematic models of biomolecular functions based on three categories: (1) ATP hydrolysis reactions including ionic hydration and protonation-deprotonation of biomolecules, (2) protein-ligand/protein-protein interactions including hydration-dehydration processes, and (3) functioning mechanisms of protein machineries based on water functions.
This book provides a concise overview of the photophysics and spectroscopy of bio chromophore ions. The book "Photophysics of Ionic Biochromophores" summarizes important recent advances in the spectroscopy of isolated biomolecular ions in vacuo, which has within the last decade become a highly active research field. Advanced instrumental apparatus and the steady increase in more and more powerful computers have made this development possible, both for experimentalists and theoreticians. Applied techniques described here include absorption and fluorescence spectroscopy, which are excellent indicators of environmental effects and can thus shed light on the intrinsic electronic structures of ions without perturbations from e.g. water molecules, counter ions, nearby charges, and polar amino acid residues. When compared with spectra of the chromophores in their natural environment, such spectra allow to identify possible perturbations. At the same time gas-phase spectra provide important benchmarks for quantum chemistry calculations of electronically excited states. This volume focuses on biological systems from protein biochromophores, e.g. the protonated Schiff-base retinal responsible for vision, and individual aromatic amino acids to peptides and whole proteins, studied using visible, ultraviolet and vacuum ultraviolet light. Work on DNA nucleotides and strands that are amenable to mass spectrometric studies because of the negatively charged sugarphosphate backbone are also presented. DNA strands represent an example of the interplay between multiple chromophores, which is even harder to model correctly than just single chromophores due to spatially extended excited states and weak coupling terms. The experimental techniques used to measure spectra and commonly used theoretical methods are described with a discussion on limitations and advantages. The volume includes an updated status of the field and interesting future directions such as cold ion spectroscopy.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
This book presents a new system of solar cells. Colloidal nanocrystals possess many physical and chemical properties which can be manipulated by advanced control over structural features like the particle size. One application field is photovoltaics where colloidal semiconductor nanocrystals are explored as components of photo-active layers which can be produced from liquid media, often in combination with conductive polymers. The further development of this interdisciplinary field of research requires a deep understanding of the physics and chemistry of colloidal nanocrystals, conducting polymers and photovoltaic devices. This book aims at bridging gaps between the involved scientific disciplines and presents important fundamentals and the current state of research of relevant materials and different types of nanoparticle-based solar cells. The book will be of interest to researchers and PhD students. Moreover, it may also serve to accompany specialized lectures in related areas.
Ion-exchange Technology I: Theory and Materials describes the theoretical principles of ion-exchange processes. More specifically, this volume focuses on the synthesis, characterization, and modelling of ion-exchange materials and their associated kinetics and equilibria. This title is a highly valuable source not only to postgraduate students and researchers but also to industrial R&D specialists in chemistry, chemical, and biochemical technology as well as to engineers and industrialists.
This thesis addresses the evolving field of measurement science, specifically that of mass spectrometry (MS) and ion mobility spectrometry (IMS) based techniques. It focuses on the design, construction and implementation of low-cost, easy-to-manufacture measurement tools that are used in modern settings such as airport security screening. Advances in these technologies often involve minimal performance enhancement at ever-increasing cost, which in turn limits accessibility to versatile measurement tools. This problem is addressed using desktop 3D printers along with widely available materials for the production of novel ion lenses and an IMS instrument with a performance comparable to that of many commercial systems. Bairds findings are a source of inspiration for scientists exploring this emerging field.
This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.
This book provides an excellent overview on the most recent results
on the industrial applications of Mossbauer spectroscopy attained
on the fields of nanotechnology, metallurgy, biotechnology and
pharmaceutical industry, applied mineralogy, energy production
industry (coal, oil, nuclear, solar, etc.), computer industry,
space technology, electronic and magnetic devices technology, ion
implantation technology, including topics like characterization of
novel construction materials, electronic components and magnetic
materials, composite materials, colloids, amorphous and nanophase
materials, small particles, coatings, interfaces, thin films and
multilayers, catalysis, corrosion, tribology, surface modification,
hydrogen storage, ball milling, radiation effects,
electrochemistry, batteries, etc. From the various reports a broad
overview emerges illustrating that the method can successfully be
applied in a wide variety of topics.
Quantum Systems in Chemistry and Physics: Progress in Methods and Applications is a collection of 33 selected papers from the scientific contributions presented at the 16th International Workshop on Quantum Systems in Chemistry and Physics (QSCP-XVI), held at Ishikawa Prefecture Museum of Art in Kanazawa, Japan, from September 11th to 17th, 2011. The volume discusses the state of the art, new trends, and the future of methods in mol- ecular quantum mechanics and their applications to a wide range of problems in physics, chemistry, and biology. The breadth and depth of the scientific topics discussed during QSCP-XVI appears in the classification of the contributions in six parts: I. Fundamental Theory II. Molecular Processes III. Molecular Structure IV. Molecular Properties V. Condensed Matter VI. Biosystems. Quantum Systems in Chemistry and Physics: Progress in Methods and Applications is written for advanced graduate students as well as for professionals in theoretical chemi- cal physics and physical chemistry. The book covers current scientific topics in mole- cular, nano, material, and bio sciences and provides insights into methodological deve- lopments and applications of quantum theory in physics, chemistry, and biology that have become feasible at the end of 2011.
This volume deals with the chemistry of five-membered heterocycles containing at least two nitrogen atoms, or those with one, or more, nitrogens and one or more atoms from group 6 of the Peri tables. It includes chapters on: oxadiazoles and thiadiazoles; five-memebered heterocyclic compounds with four-heter-atoms in the ring; five-membered rings containing two nitrogen atoms; and five-membered heterocyclic compounds with three hetero-atoms in the ring.
Introduction to Cake Filtration presents a comprehensive account of cake filtration studies including analyses of cake formation and growth, results of filtration experiments and data interpretation, measurements and determinations of filtercake properties, and incorporation of cake filtration theories to the analysis of several solid fluid separation processes. It aims at providing the necessary information to prepare people planning to undertake cake filtration work beyond the elementary level. In particular, it is hoped that this book will be helpful to individuals who are interested in cake filtration research and development quickly on track.
This unique book presents a systematic review of the methods for the determination of binding constants of complex formation in solution. Collects material that has been scattered throughout the literature of several separate fields. Offered here are methods from the areas of acid-base chemistry, metal-ion coordination compounds, hydrogen-bonding, charge-transfer complexation, hydrophobic interaction, and protein-binding. Discusses the relevant thermodynamics, modelling, statistics and regression analysis, and interpretation of data. Includes fresh discussions of random association (contact complexes), selection of standard states, and comparison of results. Treats all of the experimental methods useful for measuring these equilibrium constants, including those based on spectrophotometry, nuclear magnetic resonance, reaction kinetics, potentiometry, solubility, liquid-liquid partitioning, dialysis, chromatography, flourimetry, and many others.
Photochromism is the reversible phototransformation of a chemical species between two forms having different absorption spectra. During the phototransformation not only the absorption spectra but also various physicochemical properties change, such as the refractive index, dielectric constant, oxidation/reduction potential, and geometrical structure. The property changes can be applied to photonic equipment such as erasable memory media, photo-optical switch components, and display devices. This book compiles the accomplishments of the research project titled "New Frontiers in Photochromism" supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan. The project focused not only on the above-mentioned classical subjects in photochromism, such as color changes, optical memory, and optical switches, but also on fundamental physicochemical studies and unprecedented application fields that have not yet been explored in photochromism. The latter topics include light-driven mechanical motion, photocontrol of surface wettability, metal deposition on solid materials, photocontrol of chiral properties, ultrafast decoloration dyes, and femtosecond laser experiments, among others.
This comprehensive text collects the progress made in recent years in the fabrication, processing, and performance of organic nanophotonic materials and devices. The first part of the book addresses photonic nanofabrications in a chapter on multiphoton processes in nanofabrication and microscopy imaging. The second part of the book is focused on nanoscale light sources for integrated nanophotonic circuits, and is composed of three chapters on organic nano/microcavities, organic laser materials, and polymer light-emitting electrochemical cells (LECs). The third part is focused on the interactions between light and matter and consists in three chapters, including the propagation of light in organic nanostructures and photoswitches based on nonlinear optical polymer photonic crystals and photoresponsive molecules, respectively. The final chapter of this book introduces the integration of miniaturized photonic devices and circuits with various organic nanophotonic elements. The practical case studies demonstrate how the latest applications actually work, while tables throughout the book summarize key information and diagrams and figures help readers to grasp complex concepts and designs. The references at the end of each chapter can be used as the gateway to the relevant literature in the field. Moreover, this book helps researchers to advance their own investigations to develop the next generation of miniaturized devices for information processing, efficient energy conversion, and highly accurate sensing. Yong Sheng Zhao, PhD, is a Professor at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), China.
This book presents a state-of-the-art summary and critical analysis of work recently performed in leading research laboratories around the world on the implementation of metal oxide nanomaterial research methodologies for the discovery and optimization of new sensor materials and sensing systems. The book provides a detailed description and analysis of (i) metal oxide nanomaterial sensing principles, (ii) advances in metal oxide nanomaterial synthesis/deposition methods, including colloidal, emulsification, and vapor processing techniques, (iii) analysis of techniques utilized for the development of low temperature metal oxide nanomaterial sensors, thus enabling a broader impact into sensor applications, (iv) advances, challenges and insights gained from the in situ/ex situ analysis of reaction mechanisms, and (v) technical development and integration challenges in the fabrication of sensing arrays and devices.
Volume 4 of Formulation Science and Technology is a survey of the applications of formulations in a variety of fields, based on the theories presented in Volumes 1 and 2. It offers in-depth explanations and a wealth of real-world examples for research scientists, universities, and industry practitioners in the fields of Agrochemicals, Paints and Coatings and Food Colloids.
"Encyclopedia of the Alkaline Earth Compounds" is a compilation describing the physical and chemical properties of all of the alkaline earth compounds that have been elucidated to date in the scientific literature. These compounds are used in applications such as LEDs and electronic devices such as smart phones and tablet computers. Preparation methods for each compound are presented to show which techniques have been successful. Structures and phase diagrams are presented where applicable to aid in understanding the complexities of the topics discussed. With concise descriptions presenting the chemical, physical and
electrical properties of any given compound, this subject matter
will serve as an introduction to the field. This compendium is
vital for students and scientific researchers in all fields of
scientific endeavors, including non-chemists. |
![]() ![]() You may like...
Advances in Physical Organic Chemistry…
Ian Williams, Nick Williams
Hardcover
R5,803
Discovery Miles 58 030
New and Future Developments in Microbial…
H. B Singh, Vijai G. Gupta, …
Hardcover
Nanoparticle Technology Handbook
Makio Naito, Toyokazu Yokoyama, …
Hardcover
The Foundations of Physical Organic…
E. Thomas Strom, Vera V. Mainz
Hardcover
R5,820
Discovery Miles 58 200
|