Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Physical chemistry > General
Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification topics, such as ion-beam mixing, stresses, and sputtering, are also described.
Come on a journey into the heart of matter,and enjoy the process!,as a brilliant scientist and entertaining tour guide takes you on a fascinating voyage through the Periodic Kingdom, the world of the elements. The periodic table, your map for this trip, is the most important concept in chemistry. It hangs in classrooms and labs throughout the world, providing support for students, suggesting new avenues of research for professionals, succinctly organizing the whole of chemistry. The one hundred or so elements listed in the table make up everything in the universe, from microscopic organisms to distant planets. Just how does the periodic table help us make sense of the world around us? Using vivid imagery, ingenious analogies, and liberal doses of humour P. W. Atkins answers this question. He shows us that the Periodic Kingdom is a systematic place. Detailing the geography, history and governing institutions of this imaginary landscape, he demonstrates how physical similarities can point to deeper affinities, and how the location of an element can be used to predict its properties. Here's an opportunity to discover a rich kingdom of the imagination kingdom of which our own world is a manifestation.
Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors.
To the eyes of a chemist, carbon is certainly one of the most fascinating elements of the periodic table. Basically, the electronic structure and atomic size of carbon enables this element to form a variety of bonds with other elements and, most importantly, with other carbon atoms as weIl. These unique features lead to the amazingly complicated molecular structures we encounter e. g. in life sciences and organic chemistry. Of course, the technical importance of carbon is enormou- but I don't want to carry too many coals to Newcastle. Prom the viewpoint of an astrophysicist or chemist, the significance of carbon lies in the fact that it is the most abundant condensable element in space. Born in the interior of stars, and from there expelled into the interstellar medium, it initiates the formation of simple and complex molecules and of nanoscopic grains. These in turn form huge clouds in space - the birthplace of new stars and planetary systems. The decisive role of carbon in interstellar chemistry is widely accepted and the search for more and more families of interstellar carbon-bearing molecules is a topic of ongoing research. The interdisciplinary aspect of carbon also concerns its various solid forms, in which C and the other closed-cage fullerenes are certainly some of the most popular 60 newcomers.
Senior scientists from neighboring and other NATO countries joined their efforts to help this region to get to know their problems, discussed their solutions and how they can be helped out. Distinguished experts described how they had succeeded in developing the solutions to such problem in their countries.
This volume of Modern Aspects covers a wide spread of topics presented in an authoritative, informative and instructive manner by some internationally renowned specialists. Professors Politzer and Dr. Murray provide a comprehensive description of the various theoretical treatments of solute-solvent interactions, including ion-solvent interactions. Both continuum and discrete molecular models for the solvent molecules are discussed, including Monte Carlo and molecular dynamics simulations. The advantages and drawbacks of the resulting models and computational approaches are discussed and the impressive progress made in predicting the properties of molecular and ionic solutions is surveyed. The fundamental and applied electrochemistry of the silicon/electrolyte interface is presented in an authoritative review by Dr. Gregory Zhang, with emphasis in the preparation of porous silicon, a material of significant technological interest, via anodic dissolution of monocrystalline Si. The chapter shows eloquently how fundamental electrokinetic principles can be utilized to obtain the desired product morphology. Markov chains theory provides a powerful tool for modeling several important processes in electrochemistry and electrochemical engineering, including electrode kinetics, anodic deposit formation and deposit dissolution processes, electrolyzer and electrochemical reactors performance and even reliability of warning devices and repair of failed cells. The way this can be done using the elegant Markov chains theory is described in lucid manner by Professor Thomas Fahidy in a concise chapter which gives to the reader only the absolutely necessary mathematics and is rich in practical examples.
This fundamental book on interfacial phenomena forms the basis of application of interface and colloid science to various disperse systems. These include suspensions, emulsions, nano-dispersions, wetting, spreading, deposition and adhesion of particles to surfaces. These systems occur in most industrial applications, such as personal care and cosmetic formulations, pharmaceutical systems particularly for controlled and targeted delivery of drugs, agrochemical formulations and enhancement of their biological performance, paints and coatings as well as most food formulations. These applications are described in volume 2. The text is very valuable for formulation chemists, chemical engineers and technologies who are involved in such applications. In addition this fundamental text is also valuable for research scientists and Ph.D. students investigating various aspects of interface and colloid science.
For a long time, the properties of transition metal and rare earth compounds have fascinated chemists and physicists from a scientific view-point, and more recently also their enormous potential as new materials has been explored. Applications in different fields have already been realized or are under c- rent investigation, for example, new laser materials, IR to visible upconversion systems, compounds for photolithographic processes, systems involving pho- redox processes for solar energy conversion, new photovoltaic devices, chemical sensors, biosensors, electroluminescent devices (OLEDs) for flat panel display systems, supramolecular devices with wide-range definable photophysical properties, materials for energy harvesting, optical information and storage systems, etc. Metal complexes are also highly important in biology and me- cine. Most of the applications mentioned are directly related to the properties of the electronic ground state and the lower-lying excited states. Metal complexes with organic ligands or organometallic compounds exhibit outstanding features as compared to purely organic molecules. For instance, metal compounds can often be prepared and applied in different oxidation states. Furthermore, various types of low-lying electronic excitations can be induced by a suitable choice of ligands, for example, such as metal-centered transitions (MC, e. g. d-d* tran- tion), ligand-centered (LC, e. g. n-n*), metal-to-ligand-charge transfer (MLCT, e. g. d-7r*), intra-ligand-charge-transfer (ILCT) transitions, etc. In particular, the orbitals involved in the resulting lowest excited states determine the photoph- ical and photochemical properties and thus the specific use of the compoun
This volume, occasioned by the centenary of the Fritz Haber Institute, formerly the Institute for Physical Chemistry and Electrochemistry, covers the institute's scientific and institutional history from its founding until the present. The institute was among the earliest established by the Kaiser Wilhelm Society, and its inauguration was one of the first steps in the development of Berlin-Dahlem into a center for scientific research. Its establishment was made possible by an endowment from Leopold Koppel, granted on the condition that Fritz Haber, well-known for his discovery of a method to synthesize ammonia from its elements, be made its director. The history of the institute has largely paralleled that of 20th-century Germany. It undertook controversial weapons research during World War I, followed by a "Golden Era" during the 1920s, in spite of financial hardships. Under the National Socialists it experienced a purge of its scientific staff and a diversion of its research into the service of the new regime, accompanied by a breakdown in its international relations. In the immediate aftermath of World War II it suffered crippling material losses, from which it recovered slowly in the post-war era. In 1953, shortly after taking the name of its founding director, the institute joined the fledgling Max Planck Society. During the 1950s and 60s, the institute supported diverse researches into the structure of matter and electron microscopy in a territorially insular and politically precarious West-Berlin. In subsequent decades, as both Berlin and the Max Planck Society underwent significant changes, the institute reorganized around a board of coequal scientific directors and a renewed focus on the investigation of elementary processes on surfaces and interfaces, topics of research that had been central to the work of Fritz Haber and the first "Golden Era" of the institute.
Combustion systems are confined fields of compressible fluids where exothermic processes of combustion take place, subject to boundary conditions imposed at its borders. The subject of Dynamics of Combustion Systems is presented in three parts: Part 1. Exothermicity considering the thermodynamic effects due to evolution of exothermic energy in a combustion system Chapter 1. Thermodynamic Aspects Part 2. Field exposing the dynamic properties of flow fields where the exothermic energy is deposited Chapter 5. Aerodynamic Aspects Part 3. Explosions revealing the dynamic features of fields and fronts due to rapid deposition of exothermic energy Chapter 9. Blast Wave Theory
In this volume, the authors close the gap between abstract mathematical approaches, such as abstract algebra, number theory, nonlinear functional analysis, partial differential equations, methods of nonlinear and multi-valued analysis, on the one hand, and practical applications in nonlinear mechanics, decision making theory and control theory on the other. Readers will also benefit from the presentation of modern mathematical modeling methods for the numerical solution of complicated engineering problems in hydromechanics, geophysics and mechanics of continua. This compilation will be of interest to mathematicians and engineers working at the interface of these field. It presents selected works of the open seminar series of Lomonosov Moscow State University and the National Technical University of Ukraine Kyiv Polytechnic Institute . The authors come from Germany, Italy, Spain, Russia, Ukraine, and the USA."
Polymers, main components of plastics and rubbers, are being discarded in increasing quantities. But this waste can also be considered as plastic gold'. Public concern, coupled with the inherent value of the material, means that recycling is imperative. The present book presents a survey of current knowledge in the form of case studies, including current legal and educational issues. Topics covered also include regulation and practice in NATO countries, the economics of recycling, the reprocessing of single polymers and mixtures, and future prospects and strategies. Audience: Vital reading for all polymer scientists, technicians and engineers.
This thesis deals with strongly luminescent lanthanide complexes having novel coordination structures. Luminescent lanthanide complexes are promising candidates as active materials for EL devices, lasers, and bio-sensing applications. The organic ligands in lanthanide complexes control geometrical and vibrational frequency structures that are closely related to the luminescent properties. In most of the previous work, however, lanthanide complexes have high-vibrational frequency C-H units close to the metal center for radiationless transition. In this thesis, the luminescent properties of lanthanide complexes with low-vibrational frequency C-F and P=O units are elucidated in terms of geometrical, vibrational, and chemical structures. The author also describes lanthanide coordination polymers with both high thermal stability (decomposition point > 300 DegreesC) and strong-luminescent properties (emission quantum yield > 80%). The author believes that novel studies on the characteristic structures and photophysical properties of lanthanide complexes may open up a frontier field in photophysical, coordination and material chemistry.
Details the use of advanced AFMs and addresses all types of functional AFMs First book to focus on application of AFM for energy research Enables readers to operate an AFM successfully and to understand the data obtained Covers new achievements in AFM instruments, including higher speed and resolution, automatic and deep learning AFM, and how AFM is being combined with other new methods like IR and Raman microscopy
The concept of macroscopic waves and patterns developing from chemical reaction coupling with diffusion was presented, apparently for the first time, at the Main Meeting of the Deutsche Bunsengesellschaft fur Angewandte Physikalische Chemie, held in Dresden, Germany from May 21 to 24, 1906. Robert Luther, Director of the Physical Chemistry Laboratory in Leipzig, read his paper on the discovery and analysis of propagating reaction-diffusion fronts in autocatalytic chemical reactions [1, 2]. He presented an equation for the velocity of these new waves, V = a(KDC)1/2, and asserted that they might have features in common with propagating action potentials in nerve cell axons. During the discussion period, a skeptic in the audience voiced his objections to this notion. It was none other than the great physical chemist Walther Nernst, who believed that nerve impulse propagation was far too rapid to be akin to the propagating fronts. He was also not willing to accept Luther's wave velocity equation without a derivation. Luther stood his ground, saying his equation was "a simple consequence of the corresponding differential equation. " He described several different autocatalytic reactions that exhibit propagating fronts (recommending gelling the solution to prevent convection) and even presented a demonstration: the autocatalytic permanganate oxidation of oxalate was carried out in a test tube with the image of the front projected onto a screen for the audience.
Cratons and Fold Belts of India, is a unique attempt at presenting geological characteristics and evolution of the fold belts and the cratonic areas of the Indian shield. The author has evaluated the different evolutionary models for each fold belt in light of all the currently available geological and geochronological informations that are clearly listed. Shortcomings, if any, of each model are stated and a viable geodynamic model is presented for each fold belt. The book is self-contained it includes an introduction to the processes of mountain building, especially plate tectonics theory with its application to the evolution of the Himalaya as an illustrative example so that the reader can better appreciate the novel approach to the evolution of Proterozoic fold belts. The author eschews a detailed account of the fold belts for a clear description of all the concepts that go into building models. It is primarily written for graduate students, teachers and for those geoscientists who aspire to know all about the Indian shield."
1. 1 Macroionic Systems and the Scope of the Book Inthepresentmonograph,wewilldiscussionicpolymersolutionsandcolloidal dispersions. When these substances are dissolved into a solvent, they produce ionicspecies havinglargemolecularweightsandtheir counterions. We knowa variety of naturally occurring ionic polymers and chemically synthesizedc- pounds. Examples of the former are nucleic acids and some proteins, which playanimportantroleinbiologicalsystems. Examplesofsyntheticionicpo- mers are polyacrylic acid (PAA), polystyrenesulfonic acid (PSS) and poly- lylamine (PAAm). PAAisahighpolymer,inwhichmacrylicacidmoleculesCH =CH(COOH) 2 arelinearlypolymerizedby covalent bonds. Thenumber mis calledthe degree 3 of polymerization and is usually of the order of 10 . When PAA is dissolved in a dissociating solvent like water, anionic macroions and counterions are produced. In the following scheme, the counterions are protons but they may + be metal cations such as Na : ? ? ? ? ?CH ? CH? ?CH ? CH? 2 2 + ? ? ? ? | ? | + mH ? COOH COO m m PAA PAA anion Counterions. PAAm is a cationic polymer and dissociates into PAAm cations and anionic counterions as shown below: ? ? ? ? ?CH ? CH? ?CH ? CH? 2 2 ? ? ? ? ? | +mHCl ? | +mCl + CH ?NH CH ?NH 2 2 2 3 m m PAAm PAAm cation Counterions. 2 1 Introduction + ? In the case of NaCl, it dissociates into Na and Cl , which both have low molecular weights. On the other hand, PAA anions and PAAm cations have 3 highmolecularweights. Ifmis10 ,onepolymerion(macroion)hasananalyt- 3 + icalchargenumberZ of10 ,whichisexceedinglylargerthan1forNa .
Friction force microscopy is an important analytical tool in the field of tribology on the nanometer-scale. The contact area between the probing tip and the sample is reduced to some square nanometers, corresponding to the ideal of a single asperity contact. Traditional concepts, such as friction coefficients, adhesion and elasticity and stick-slip are re-examined with this novel technique. New concepts based upon classical and quantum mechanics are investigated.
Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.
Although coordination chemistry naturally centers on the synthesis of coordination compounds, the synthesis of these materials is typically not an end in itself. Coordination compounds are utilized in all branches of chemistry; from theoretical modeling to industrial and consumer products. While a large amount of information is available on coordination chemistry in general and synthetic methods in particular, no comprehensive work has been presented on the preparation of coordination compounds with an emphasis on synthetic strategies rather than on detailed descriptions of specific syntheses. The goal of this book is to provide an approach to coordination chemistry that is based upon preparative strategies.The main aim of the authors is to present a systematic classification of synthetic reactions rather than an encyclopedic listing of experimental results. Hence, the coverage is more selective than exhaustive. Despite this, the book provides access to the original literature with ca. 2000 references. The edition is well-illustrated and contains almost 250 schemes, figures and illustrations of crystal structures of selected complexes. Hardbound. The publication of this volume covers current work on the syntheses and reactions of pyridines, quinolines and isoquinolines. Also included are chapters (chapters 28, 30, 31 and 32) which review recent progress in the chemistry of the pyridine, quinoline and isoquinoline alkaloids. The theoretical aspects of pyridine chemistry, which were covered in a separate chapter (chapter 23) in the 2nd Edition, are now incorporated into a separate single chapter (chapter 24), without division.Recent developments in the chemistry of six-membered heterocycles containing a single phosphorus, arsenic, antimony, or bismuth atom are also surveyed. Once again, the reader of Rodd will find this volume extremely valuable since it provides a concise, yet complete, survey of a major subject area of heterocyclic chemistry.
This book gives physical chemists a broader view of potential
biological applications of their techniques for the study of
nucleic acids in the gas phase. It provides organic chemists,
biophysicists, and pharmacologists with an introduction to new
techniques they can use to find the answers to yet unsolved
questions. Laboratory sciences have bloomed with a variety of
techniques to decipher the properties of the molecules of life.
This volume introduces techniques used to investigate the
properties of nucleic acids in the absence of solvent. It
highlights the specificities pertaining to the studies of nucleic
acids, although some of the techniques can similarly be applied to
the study of other biomolecules, like proteins. The first part of
the book introduces the techniques, from the transfer of nucleic
acids to the gas-phase, to their detailed physico-chemical
investigation. Each chapter is devoted to a specific molecular
property, and illustrates how various approaches (experimental and
theoretical) can be combined for the interpretation.
This book provides a concise introduction to pericyclic and photochemical reactions for organic synthesis. In the first part about pericyclic reactions, the author explains electrocyclic reactions, cycloaddition reactions, sigmatropic rearrangements, and group transfer reactions. The second part on photochemistry is dedicated to photochemical reactions of a variety of compound classes, including alkenes, dienes, and polyenes, carbonyl compounds, and aromatic compounds. Additionally, photofragmentation reactions are described in a dedicated chapter. The last chapter gives an outlook on applications of photochemistry and natural photochemical phenomena. Both parts start with a comprehensive presentation of the general principles of the pericyclic and photochemical reactions. All chapters are rich in examples, which help illustrate the explained principles and establish ties to results and trends in recent research. Additionally, each chapter offers exercises for students, and solutions to the problems are provided in a separate appendix. This book nicely illustrates the utility of pericyclic and photochemical reactions and provides students and researchers with the tools to apply them routinely for an efficient synthesis of complex organic molecules. It will therefore appeal to advanced undergraduate students, graduate and postgraduate students, and even to practitioners and scientists in the field of organic synthesis. The rich examples and exercises will also make it a versatile tool for teachers and lecturers. |
You may like...
Ionic Liquids as Green Solvents…
Robin D. Rogers, Kenneth R. Seddon
Hardcover
R2,335
Discovery Miles 23 350
Controlling Maillard Pathways To…
Donald Mottram, Andrew Taylor
Hardcover
R5,401
Discovery Miles 54 010
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,216
Discovery Miles 32 160
Classics in Total Synthesis II - More…
KC Nicolaou, S. A Snyder
Paperback
Frontiers of Plasmon Enhanced…
Yukihiro Ozaki, George C. Schatz, …
Hardcover
R4,781
Discovery Miles 47 810
Frontiers of Plasmon Enhanced…
Yukihiro Ozaki, George C. Schatz, …
Hardcover
R4,789
Discovery Miles 47 890
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,238
Discovery Miles 52 380
|