![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > General
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
The primary objective of this volume, the first in a new series entitled Theoretical and Computational Chemistry, is to survey some effective approaches to understanding, describing and predicting ways in which solutes and solvents interact and the effects they have upon each other. The treatment of solute/solvent interactions that is presented emphasizes a synergism between theory and experiment. Data obtained experimentally are used as a basis for developing quantitative theoretical models that permit the correlation and interpretation of the data, and also provide a predictive capability. The latter being of course a key motivation for these efforts. Linear solvation energy relationships have been quite successful in this respect and accordingly receive considerable attention. Other effective approaches, including computational ones, are also being pursued, and are discussed in several chapters. This is an area that is continually evolving, and it is hoped that the present volume will convey a sense of its dynamic nature.
The Second Volume of Equilibrium between Phases of Matter, when compared with the First Volume, by H.A.J. Oonk and M.T. Calvet, published in 2008, amounts to an extension of subjects, and a deepening of understanding. In the first three sections of the text an extension is given of the theory on isobaric binary systems. The fourth section gives an account of the thermodynamic analyses of four isobaric binary key systems, highlighting the power of empirical, (exo)thermodynamic correlations. The fifth section is devoted to the thermodynamic description of ternary systems. The last three sections concentrate on the properties of materials, and the phase behaviour of systems under the conditions of high temperature and high pressure conditions that prevail in the interior of the Earth. A new equation of state is the subject of the sixth section. In the seventh section a move is made to statistical thermodynamics and vibrational models; the description of the systems has changed from mathematical to physical. The last section is on the system MgO SiO2, looked upon from a geophysical point of view. Throughout the work high priority is given to the thermodynamic assessment of experimental data; numerous end-of-section exercises and their solutions are included. Along with the First Volume, the work is useful for materials scientists and geophysicists as a reference text. Audience Volume II is a lecture book for postgraduate students in chemistry, chemical engineering, geology and metallurgy. It is highly useful as a recommended text for teachers and researchers in all fields of materials science. "
The periodic table is one of the most potent icons in science. It
lies at the core of chemistry and embodies the most fundamental
principles of the field. The one definitive text on the development
of the periodic table by van Spronsen (1969), has been out of print
for a considerable time. The present book provides a successor to
van Spronsen, but goes further in giving an evaluation of the
extent to which modern physics has, or has not, explained the
periodic system. The book is written in a lively style to appeal to
experts and interested lay-persons alike.
This and its companion Volumes 2 and 3 document the proceed- ings of the 4th International Symposium on Surfactants in Solution held in Lund, Sweden, June 27-July 2, 1982. This biennial event was christened as the 4th Symposium as this was a continuation of ear- li er conferences dealing with surfactants held in 1976 (Albany) under the title "Micellization, Solubilization, and Microemulsions"; in 1978 (Knoxville) under the title "Solution Chemistry of Surfac- tants"; and in 1980 (Potsdam) where it was dubbed as "Solution Be- bavior of Surfactants: Theoretical and Applied Aspects:' The Pl02 3 ceedings of all these symposia have been properly chronicled. ' , The Lund Symposium was bi lIed as "Surfactants in Solution" as both the aggregation and adsorption aspects of surfactants were covered, and furthermore we were interested in a general title which could be used for future conferences in this series. As these biennial events bave become a weIl recognized forum for bringing together researchers with varied interests in the arena of surfactants, so it is amply vindicated to continue these, and the next meeting is planned for July 9-13, 1984 in Bordeaux, France under the cochair- manship of K. L. Mittal and P. Bothorel. The venue for 1986 is still open, although India, inter alia, is a good possibility. Apropos, we would be delighted to entertain suggestions regarding where and when these biennial symposia should be held in the future and you may direct your response to Kk~.
This volume entitled Advanced Science and Technology of Sintering, contains the edited Proceedings of the Ninth World Round Table Conference on Sintering (IX WRTCS), held in Belgrade, Yugoslavia, September 1-4 1998. The gathering was one in a series of World Round Table Conferences on Sintering organised every four years by the Serbian Academy of Sciences and Arts (SASA) and the International Institute for the Science of Sintering (IISS). The World Round Table Conferences on Sintering have been traditionally held in Yugoslavia. The first meeting was organised in Herceg Novi in 1969 and since then they have regularly gathered the scientific elite in the science of sintering. It is not by chance that, at these conferences, G. C. Kuczynski, G. V. Samsonov, R. Coble, Ya. E. Geguzin and other great names in this branch of science presented their latest results making great qualitative leaps in the its development. Belgrade hosted this conference for the first time. It was chosen as a reminder that 30 years ago it was the place where the International Team for Sintering was formed, further growing into the International Institute for the Science of Sintering. The IX WRTCS lasted four days. It included 156 participants from 17 countries who presented the results of their theoretical and experimental research in 130 papers in the form of plenary lectures, oral presentations and poster sections.
The 2003 International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials" was held in September 2003. In the tradition of the earlier ICHMS conferences, this meeting served as an interdisciplinary forum for the presentation and discussion of the most recent research on transition to hydrogen-based energy systems, technologies for hydrogen production, storage, utilization, materials, energy and environmental problems. The aim of the volume is to provide an overview of the latest scientific results on research and development in the different topics cited above. The representatives from industry, public laboratories, universities and governmental agencies have presented the most recent advances in hydrogen concepts, processes and systems, to evaluate current progress in these areas of investigations and to identify promising research directions for the future.
The so-called reaction path (RP) with respect to the potential energy or the Gibbs energy ("free enthalpy") is one of the most fundamental concepts in chemistry. It significantly helps to display and visualize the results of the complex microscopic processes forming a chemical reaction. This concept is an implicit component of conventional transition state theory (TST). The model of the reaction path and the TST form a qualitative framework which provides chemists with a better understanding of chemical reactions and stirs their imagination. However, an exact calculation of the RP and its neighbourhood becomes important when the RP is used as a tool for a detailed exploring of reaction mechanisms and particularly when it is used as a basis for reaction rate theories above and beyond TST. The RP is a theoretical instrument that now forms the "theoretical heart" of "direct dynamics." It is particularly useful for the interpretation of reactions in common chemical systems. A suitable definition of the RP of potential energy surfaces is necessary to ensure that the reaction theories based on it will possess sufficiently high quality. Thus, we have to consider three important fields of research: - Analysis of potential energy surfaces and the definition and best calculation of the RPs or - at least - of a number of selected and chemically interesting points on it. - The further development of concrete vers ions of reaction theory beyond TST which are applicable for common chemical systems using the RP concept.
There exists a large literature on the spectroscopic properties of copper(II) com- 9 pounds. This is due to the simplicity of the d electron configuration, the wide variety of stereochemistries that copper(II) compounds can adopt, and the f- xional geometric behavior that they sometimes exhibit [1]. The electronic and geometric properties of a molecule are inexorably linked and this is especially true with six-coordinate copper(II) compounds which are subject to a Jahn-T- ler effect.However,the spectral-structural correlations that are sometimes d- wn must often be viewed with caution as the information contained in a typical solution UV-Vis absorption spectrum of a copper(II) compound is limited. Meaningful spectral-structural correlations can be obtained in a related series of compounds where detailed spectroscopic data is available. In the fol- 4- lowing sections two such series are examined; the six-coordinate CuF and 6 2+ Cu(H O) ions doped as impurities in single crystal hosts.Using low tempera- 2 6 ture polarized optical spectroscopy and electron paramagnetic resonance, a very detailed picture can be drawn about the geometry of these ions in both their ground and excited electronic states. We then compare the spectrosco- cally determined structural data with that obtained from X-ray diffraction or EXAFS measurements.
This is the first book covering an interdisciplinary field between microwave spectroscopy of electron paramagnetic resonance (EPR) or electron spin resonance (ESR) and chronology science, radiation dosimetry and ESR (EPR) imaging in material sciences. The main object is to determine the elapsed time with ESR from forensic medicine to the age and radiation dose in earth and space science. This book is written primarily for earth scientists as well as for archaeologists and for physicists and chemists interested in new applications of the method. This book can serve as an undergraduate and graduate school textbook on applications of ESR to geological and archaeological dating, radiation dosimetry and microscopic magnetic resonance imaging (MRI). Introduction to ESR and chronology science and principle of ESR dating and dosimetry are described with applications to actual problems according to materials.
This is the first book covering an interdisciplinary field between microwave spectroscopy of electron paramagnetic resonance (EPR) or electron spin resonance (ESR) and chronology science, radiation dosimetry and ESR (EPR) imaging in material sciences. The main object is to determine the elapsed time with ESR from forensic medicine to the age and radiation dose in earth and space science. This book is written primarily for earth scientists as well as for archaeologists and for physicists and chemists interested in new applications of the method. This book can serve as an undergraduate and graduate school textbook on applications of ESR to geological and archaeological dating, radiation dosimetry and microscopic magnetic resonance imaging (MRI). Introduction to ESR and chronology science and principle of ESR dating and dosimetry are described with applications to actual problems according to materials.
Almost thirty years ago the author began his studies in colloid chemistry at the laboratory of Professor Ryohei Matuura of Kyushu University. His graduate thesis was on the elimination of radioactive species from aqueous solution by foam fractionation. He has, except for a few years of absence, been at the university ever since, and many students have contributed to his subsequent work on micelle formation and related phenomena. Nearly sixty papers have been published thus far. Recently, in search of a new orientation, he decided to assemble his findings and publish them in book form for review and critique. In addition, his use of the mass action model of micelle has received much criticism, especially since the introduction of the phase separation model. Many recent reports have postulated a role for Laplace pressure in micellization. Although such a hypothesis would provide an easy explanation for micelle formation, it neglects the fact that an interfacial tension exists between two macroscopic phases. The present book cautions against too ready an acceptance of the phase separation model of micelle formation. Most references cited in this book are studies introduced in small group meetings of colloid chemists, the participants at which included Professors M. Saito, M. Manabe, S. Kaneshina, S. Miyagishi, A. Yamauchi, H. Akisada, H. Matuo, M. Sakai, and Drs. O. Shibata, N. Nishikido, and Y. Murata, to whom the author wishes to express his gratitude for useful discussions.
Gordon J. Miller, Michael W. Schmidt, Fei Wang, Tae-Soo You: Quantitative Advances in the Zintl-Klemm Formalism Jurgen Evers: High Pressure Investigations on AIBIII Zintl Compounds (AI = Li to Cs; BIII = Al to Tl) up to 30 GPa Andrei Shevelkov, Kirill Kovnir: Zintl Clathrates Ulrich Haussermann, Verina F. Kranak, Kati Puhakainen: Hydrogenous Zintl Phases: Interstitial versus Polyanionic Hydrides
Reviews all known antifoam mechanisms, and discusses the appropriate practical approaches for solving foam control problems in a variety of industrial contexts. These range from crude oil production to detergent formulation.
This book presents theoretical studies of electronic structure, optical and spectroscopic properties of a number of compounds such as porphyrins, fullerenes and heteroatomic single-wall nanotubes. The book presents new, faster calculation methods for application in quantum-chemical theory of electronic structures. It addresses issues of practical importance such as the development of materials for photosensitizers, organic LEDs and solar cells.
This book provides a concise introduction to pericyclic and photochemical reactions for organic synthesis. In the first part about pericyclic reactions, the author explains electrocyclic reactions, cycloaddition reactions, sigmatropic rearrangements, and group transfer reactions. The second part on photochemistry is dedicated to photochemical reactions of a variety of compound classes, including alkenes, dienes, and polyenes, carbonyl compounds, and aromatic compounds. Additionally, photofragmentation reactions are described in a dedicated chapter. The last chapter gives an outlook on applications of photochemistry and natural photochemical phenomena. Both parts start with a comprehensive presentation of the general principles of the pericyclic and photochemical reactions. All chapters are rich in examples, which help illustrate the explained principles and establish ties to results and trends in recent research. Additionally, each chapter offers exercises for students, and solutions to the problems are provided in a separate appendix. This book nicely illustrates the utility of pericyclic and photochemical reactions and provides students and researchers with the tools to apply them routinely for an efficient synthesis of complex organic molecules. It will therefore appeal to advanced undergraduate students, graduate and postgraduate students, and even to practitioners and scientists in the field of organic synthesis. The rich examples and exercises will also make it a versatile tool for teachers and lecturers.
There has been a steady advance of the atomic and molecular many-body methodology over the last few years, with a concomitant development of versatile computer codes. Understanding and interpretation of electronic structural features and the associated spectroscopic properties via many-body techniques are becoming competitive with those obtained with the traditional formalisms. Since the many-body techniques are not yet a part of the repertoire of the "black-box tools" of electronic structure and spectroscopy, it seems worthwhile to take stock now of the recent progress in certain selected areas. The present volume is more in the nature of proceedings of a "Paper Symposium," rather than of one which actually took place. We did organize in Calcutta, between December 10 and 12, 1990, a small meeting on Applied Many-Body Methods to Spectroscopy and Electronic Structure, jointly organized by the Indian Association for the Cultivation of Science and the S.N. Bose National Centre for Basic Sciences. Several leading practitioners were invited, among which some could not come for various reasons.
The execution of detailed studies on the fate and levels of
hazardous elements in the environment, foodstuffs and in human
beings has become a major task in environmental research and
especially in analytical chemistry. This has led to a demand to
develop new methodology and optimize that already in use.
Aerosols play a critical role in a broad range of scientific disciplines, such as atmospheric chemistry and physics, combustion science, drug delivery and human health. This thesis explores the fundamentals of a new technique for capturing single or multiple particles using light, and for characterising these particles by Raman or fluorescence spectroscopy. The outcome of this research represents a significant development in optical manipulation techniques, specifically in optical tweezing. These findings can be applied to studies of the mass accommodation of gas-phase water molecules adsorbing onto a water surface. Not only is this a fundamental process of interest to physical chemists, but it is important for understanding the role of aerosol particles in the atmosphere, including their ability to become cloud droplets. This new strategy for investigating aerosol dynamics is fundamental in helping us understand the indirect effect of aerosols on the climate.
This volume sets out the fundamental physical chemical concepts
behind interface and colloid science. Starting from elementary
principles, including those of classical thermodynamics and
intermolecular interaction, it gradually progresses to more
advanced topics such as partition functions and stochastic
processes.
Systematic investigations of the structure, mechanics, and dynamics of biological surfaces help us understand more about biological processes taking place at cell and bacteria surfaces. Presented here is a study of the role membrane-bound saccharides play in the modulation of interactions between cells/bacteria and their environments. In this thesis, membrane structures were probed perpendicular and parallel to the surface, and sophisticated planar models of biomembranes composed of glycolipids of various structural complexities were designed. Furthermore, specular and off-specular X-ray and neutron scattering experiments were carried out. This research has led to the development of several new methods for extracting information on the structure and mechanics of saccharide-rendered biomembranes from the measured scattering signals. In fact, more is now known about the influence of the saccharide structure. These results demonstrate that the study of planar model systems with X-ray and neutron scattering techniques can provide comprehensive insight into the structure and mechanics of complex biological surfaces.
This book completes the physical foundations and experimental techniques described in volume 1 with an updated review of the accessory equipment indispensable in molecular beam experiments. It extends the subject to cluster beams and beams of hyperthermal and subthermal energies. As in volume 1, a special effort is made to outline the physical foundations of the various experimental techniques. Hence this book is intended not only as a reference standard for researchers in the field, but also to bring the flavor of current molecular beam research to advanced undergraduates and graduate students and to enable them to gain a solid background in the field and its technique.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume. |
You may like...
Controlling Maillard Pathways To…
Donald Mottram, Andrew Taylor
Hardcover
R5,459
Discovery Miles 54 590
Nanoparticle Technology Handbook
Makio Naito, Toyokazu Yokoyama, …
Hardcover
Chemical Reactivity - Volume 1: Theories…
Savas Kaya, Laszlo Von Szentpaly, …
Paperback
R4,005
Discovery Miles 40 050
|