![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > General
Advances in Structural Adhesive Bonding, Second Edition reviews developments in adhesive bonding for a range of advanced structural engineering applications. This new edition has been fully revised to include the latest advances in materials, testing and modeling methods, lifecycle considerations, and industrial implementation. Sections review advances in commonly used groups of structural adhesives, covering epoxy, acrylic, anaerobic and cyanoacrylate, polyurethane, and silicone adhesives, along with toughening. Other chapters cover various types of adherends and pre-treatment methods for structural materials, including metals, plastics, composites, wood and joint design and testing, including topics such as fracture mechanics, life prediction techniques, and advanced testing methods. This is a valuable guide for all those working with structural adhesives, including those in an industrial setting, adhesive specialists, structural engineers, design engineers, R&D professionals, and scientists, as well as academic researchers and advanced students in adhesives, joining technology, materials science and mechanical engineering.
The growth of technology for chemical assessment has led to great developments in the investigation of chemical reactivity in recent years, but key information is often dispersed across many different research fields. Combining both original principles and the cutting-edge theories used in chemical reactivity analysis, Chemical Reactivity, Volume 1 present the latest developments in theoretical chemistry and its application for the assessment of chemical processes. Beginning with an exploration of different theories and principles relating to electronic structure and reactivity of confined electronic systems, the book goes on to highlight key information on such topics as Dyson orbitals, target-ion overlaps, reaction fragility, magnetizability principles and the Fuki function. Density Functional Theory is discussed in relation to numerous different principles and approaches, with further information on constrained methods and diabatic models, bonding evolution theory, orbital-based population analysis models and charge transfer models, and Quantum chemistry and QTAIM. Consolidating the knowledge of a global team of experts in the field, Chemical Reactivity, Volume 1: Theories and Principles is a useful resource for both students and researchers interested in gaining greater understanding of the principles and theories underpinning chemical reactivity analysis.
Encyclopedia of Nanomaterials, Three Volume Set provides a comprehensive reference work on the creation, characterization, property and processing of nanomaterials. Sections cover the synthesis, functionalization, assembly and characterization of nanomaterials, their chemical, physical and biological properties, their processing in the form of coating, special texture and surface patterns, nanodevice fabrication, large-scale manufacturing, and their health and environmental impacts. Focusing on the fundamental concepts of nanomaterials and the key processes to understand, manipulate, and process them, this reference gives readers the ability to design and produce nanomaterials according to the requirements of their specific applications. Further, this encyclopedia includes sections that specifically discuss the large-scale manufacture of nanomaterials and the possible environmental and health impacts of their widespread use in many practical settings. It is written for graduate students and researchers in various fields, including biomedicine, pharmaceutical industry, energy, environmental science, catalysis, etc.
Handbook of Thermoset Plastics, Fourth Edition provides complete coverage of the chemical processes, manufacturing techniques and design properties of each polymer, along with its applications. This new edition has been expanded to include the latest developments in the field, with new chapters on radiation curing, biological adhesives, vitrimers, and 3D printing. This detailed handbook considers the practical implications of using thermoset plastics and the relationships between processing, properties and applications, as well as analyzing the strengths and weakness of different methods and applications. The aim of the book is to help the reader to make the right decision and take the correct action on the basis of informed analysis - avoiding the pitfalls the authors' experience has uncovered. In industry, the book supports engineers, scientists, manufacturers and R&D professionals working with plastics. The information included will also be of interest to researchers and advanced students in plastics engineering, polymer chemistry, adhesives and coatings.
Human Biochemistry, Second Edition provides a comprehensive, pragmatic introduction to biochemistry as it relates to human development and disease. Here, Gerald Litwack, award-wining researcher and longtime teacher, discusses the biochemical aspects of organ systems and tissue, cells, proteins, enzymes, insulins and sugars, lipids, nucleic acids, amino acids, polypeptides, steroids, and vitamins and nutrition, among other topics. Fully updated to address recent advances, the new edition features fresh discussions on hypothalamic releasing hormones, DNA editing with CRISPR, new functions of cellular prions, plant-based diet and nutrition, and much more. Grounded in problem-driven learning, this new edition features clinical case studies, applications, chapter summaries, and review-based questions that translate basic biochemistry into clinical practice, thus empowering active clinicians, students and researchers.
Annual Reports on NMR Spectroscopy, Volume 102 has established itself as a premier resource for both specialists and non-specialists who are looking to become familiar with new techniques and applications pertaining to NMR spectroscopy.
Bioinspired Design of Materials Surfaces reviews novel methods and technologies used to design surfaces and materials for smart material and device applications. The author discusses how materials wettability can be impacted by the fabrication of micro- and nanostructures, anisotropic structures, gradient structures, and heterogeneous patterned structures on the surfaces of materials. The design of these structures was inspired by nature, including lotus, cactus, beetle back and butterfly wings, spider silk, and shells. The author reviews the various wettability functions that can result from these designs, such as self-cleaning, directional adhesion, droplet driving, anti-adhesion, non-wetting, liquid repellent properties, liquid separation, liquid splitting, and more. This book presents a key reference on how to fabricate bioinspired structures on materials for desired functions of materials wettability. It also discusses challenges, opportunities and many potential applications, such as oil-water separation devices, water harvesting devices and photonic device applications.
Theory of Electrophoresis and Diffusiophoresis of Highly Charged Colloidal Particles discusses the electrophoretic and diffusiophoretic motions of various colloidal entities, such as rigid particles, liquid droplets, gas bubbles, and porous particles, focusing on the motion-deterring double-layer polarization effect pertinent to highly charged particles, with the lowly charged ones serving as the limiting cases. Boundary effects such as those from a cylindrical pore, a solid plane, or an air-water interface are analyzed as well for the electrophoretic motion of the various particles considered. Dynamic electrophoresis is also explored and treated. The contents are suitable for researchers, graduate students, or senior college students with some basic background of colloid science and transport phenomena. As there is no closed-form analytical formula in general for the situation of highly charged particles, the results are presented with extensive figures and plots as well as tables under various electrokinetic situations of interest to facilitate the possible use of interested readers.
Advances in Physical Organic Chemistry, Volume 52 in the series, is the definitive resource for authoritative reviews of work in physical organic chemistry. It aims to provide a valuable source of information that is ideal not only for physical organic chemists applying their expertise to both novel and traditional problems, but also for non-specialists across diverse areas who identify a physical organic component in their approach to research. Its hallmark is a quantitative, molecular level understanding of phenomena across a diverse range of disciplines.
New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Genes Biochemistry and Applications consolidates the most widely used genetic methods available, bringing together the fields of biochemistry, biotechnology, and microbiology. The chapters outlined give clear and concise direction on both standard and applied microbial genetic improvements, presenting undergraduates, postgraduates, and researchers with the latest developments in microbial gene technology. In addition, the book describes the background and usefulness of each experiment in question. All chapters covered in the book are derived from current peer-reviewed literature as accepted by the international scientific community.
Annual Reports in Computational Chemistry, Volume 14, provides timely and critical reviews of important topics in computational chemistry. Topics covered in this series include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings. Focusing on the most recent literature and advances in the field, each article covers a specific topic of importance to computational chemists.
Nanoparticle Technology Handbook, Third Edition, is an updated and expanded authoritative reference providing both the theory behind nanoparticles and the practical applications of nanotechnology. This third edition features twenty new chapters, providing a reference much broader in scope than the previous edition. Over 140 experts in nanotechnology and/or particle technology contributed to this new edition. The book not only includes the theory behind nanoparticles, but also the practical applications of nanotechnology. It examines future possibilities and new innovations and contains important knowledge on nanoparticle characterization and the effect of nanoparticles on the environment and humans. Nanoparticle technology is a new and revolutionary technology, which is increasingly used in electronic devices and nanomaterials. It handles the preparation, processing, application and characterization of nanoparticles and has become the core of nanotechnology as an extension of conventional fine particle/powder technology. Nanoparticle technology plays an important role in the implementation of nanotechnology in many engineering and industrial fields, including electronic devices, advanced ceramics, new batteries, engineered catalysts, functional paint and ink, drug delivery system, biotechnology, etc., making use of the unique properties of nanoparticles, which are completely different from those of bulk materials.
This book examines the history and fundamentals of the physical organic chemistry discipline. With the recent flowering of the organic synthesis field, physical organic chemistry has seemed to be shrinking or perhaps is just being absorbed into the toolkit of the synthetic chemist. The only Nobel Prize that can be reasonably attributed to a physical organic chemist is the 1994 award to George Olah, although Jeffrey I. Seeman has recently made a strong case that R. B. Woodward was actually a physical organic chemist in disguise (I). 2014 saw the awarding of the 50th James Flack Norris Award in Physical Organic Chemistry. James Flack Norris was an early physical organic chemist, before the discipline received its name. This book provides insight into the fundamentals of the field, and each chapter is devoted to a major discovery or to noted physical organic chemists, including Paul Schleyer, William Doering, and Glen A. Russell.
This book brings together the latest perspectives and ideas on teaching modern physical chemistry. It includes perspectives from experienced and well-known physical chemists, a thorough review of the education literature pertaining to physical chemistry, a thorough review of advances in undergraduate laboratory experiments from the past decade, in-depth descriptions of using computers to aid student learning, and innovative ideas for teaching the fundamentals of physical chemistry. This book will provide valuable insight and information to all teachers of physical chemistry.
Aggregation-induced emission (AIE) stands for an intriguing phenomenon in which a series of non-emissive molecules in solutions are induced to emit strongly in the aggregate or solid state. The concept of AIE was first coined by author Ben Zhong Tang in 2001, when he and his co-workers serendipitously discovered that 1-methyl-1,2,3,4,5-pentaphenylsilole was almost non-emissive in ethanol solution but became extremely bright in water-ethanol mixtures. Over the past 15 years, AIE has grown into a research field with high visibility and broad impact across both science and technology. Aggregation-Induced Emission: Materials and Applications summarizes the recent advances in AIE research, ranging from fundamentals, such as design, synthesis, and optical properties of AIE-active molecules, to mechanism studies supported by modeling and experimental investigations, and further to promising applications in the fields of energy, environment, and biology. The topics covered in Volume 2 include: AIE polymers; AIE-induced chirogenesis; Room-temperature phosphorescent AIE molecules; Liquid crystalline AIE molecules; AIE materials for energy devices; New chemo- and biosensors with AIE molecules; Cell structure and function imaging with AIE molecules; and AIE materials in drug delivery and therapy.
The role of the Maillard reaction in forming flavors from amino
acid and sugar precursors has been studied for many years. To
establish the basic chemistry of the reaction, researchers have
used model systems, often solutions of a single amino acid with a
single sugar. Despite the apparent simplicity of the system,
heating such a solution can generate tens if not hundreds of
compounds, which requires careful and time-consuming analysis to
identify and quantify each component.
In this second edition, Edwin Frankel has updated and extended his
now well-known book Lipid oxidation which has come to be regarded
as the standard work on the subject since the publication of the
first edition seven years previously. His main objective is to
develop the background necessary for a better understanding of what
factors should be considered, and what methods and lipid systems
should be employed, to achieve suitable evaluation and control of
lipid oxidation in complex foods and biological systems.
In this volume, inorganic, organic, and bioorganic chemistry are
represented in contributions from around the world. Pioneering work
in self-assembled structures organized by the use of transition
metals is described in chapter 1, followed by details of extensive
studies of self-assembled structures formed from various
biomolecules in chapter 2. The next two chapters describe the
formation of spherical molecular containers and their understanding
of such structures based on Platonic and Archimedean solids, and
the fascinating family of synthetic peptide receptors and the
interactions that can be explored using these host molecules. In
chapter 5 a mixture of computational chemistry, drug design, and
synthetic organic and inorganic chemistry in the development of
superoxide dismutase mimics is described. The final two chapters
discuss the bioorganic and supramolecular principles required for
the design of synthetic artificial enzymes, and the supramolecular
self-assembly and its possible role in the origin of life.
This is the fifth volume of "Advances in Sonochemistry" the first
having been published in 1990. The definition of sonochemistry has
developed to include not only the ways in which ultrsound has been
harnessed to effect chemistry but also its uses in material
processing. Subjects included range from chemical dosimetry to
ultrasound in microbiology to ultrasound in the extraction of plant
materials and in leather technology.
This text provides a uniform and consistent approach to diversified
problems encountered in the study of dynamical processes in
condensed phase molecular systems. Given the broad
interdisciplinary aspect of this subject, the book focuses on three
themes: coverage of needed background material, in-depth
introduction of methodologies, and analysis of several key
applications. The uniform approach and common language used in all
discussions help to develop general understanding and insight on
condensed phases chemical dynamics. The applications discussed are
among the most fundamental processes that underlie physical,
chemical and biological phenomena in complex systems.
Part of a series which presents reports of efforts in all areas of supramolecular science, this volume discusses a variety of topics in the field.
This series provides engineers with vapor pressure data for process design, production, and environmental applications.
This book presents the SPH method (Smoothed-Particle Hydrodynamics)
for fluid modelling from a theoretical and applied viewpoint. It
comprises two parts that refer to each other. The first one,
dealing with the fundamentals of Hydraulics, is based on the
elementary principles of Lagrangian and Hamiltonian Mechanics. The
specific laws governing a system of macroscopic particles are
built, before large systems involving dissipative processes are
explained. The continua are discussed, and a fairly exhaustive
account of turbulence is given. The second part discloses the bases
of the SPH Lagrangian numerical method from the continuous
equations, as well as from discrete variational principles, setting
out the method's specific properties of conservativity and
invariance. Various numerical schemes are compared, permanently
referring to the physics as dealt with in the first part.
Applications to schematic instances are discussed, and, ultimately,
practical applications to the dimensioning of coastal and fluvial
structures are considered.
Chemometrics and Chemoinformatics gives chemists and other scientists an introduction to the field of chemometrics and chemoinformatics. Chemometrics is an approach to analytical chemistry based on the idea of indirect observation. Measurements related to the chemical composition of a substance are taken, and the value of a property of interest is inferred from them through some mathematical relation. Basically, chemometrics is a process. Measurements are made, data is collected, and information is obtained to periodically assess and acquire knowledge. This, in turn, has led to a new approach for solving scientific problems: (1) measure a phenomenon or process using chemical instrumentation that generates data inexpensively, (2) analyze the multivariate data, (3) iterate if necessary, (4) create and test the model, and (5) develop fundamental multivariate understanding of the process. Chemoinformatics is a subfield of chemometrics, which encompasses the analysis, visualization, and use of chemical structural information as a surrogate variable for other data or information. The boundaries of chemoinformatics have not yet been defined. Only recently has this term been coined. Chemoinformatics takes advantage of techniques from many disciplines such as molecular modeling, chemical information, and computational chemistry. The reason for the interest in chemoinformatics is the development of experimental techniques such as combinatorial chemistry and high-throughput screening, which require a chemist to analyze unprecedented volumes of data. Access to appropriate algorithms is crucial if such experimental techniques are to be effectively exploited for discovery. Many chemists want to use chemoinformatic methods in their work but lack the knowledge required to decide which techniques are the most appropriate.
Following Ionic Liquids: Industrial Applications to Green Chemistry, SS #818, by the same editors, this book focuses on exciting new developments in ionic liquids. |
You may like...
|