![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Cellular biology > General
This volume covers a range of methods used in plant cytogenetics, beginning with basic analysis of chromosomes and visualizing gene locations, to manipulating and dissecting chromosomes, and then focusing on less understood features of chromosomes such as recombination initiation sites and epigenomic marks. The methods described in Plant Cytogenetics: Methods and Protocols build on each other and provide, those new to the field, with a comprehensive platform to support their research endeavours, while also introducing advanced techniques to experienced researchers. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting edge and thorough, Plant Cytogenetics: Methods and Protocols, is a valuable resource for anyone who is interested in the diverse and wonderfully complex field of cytogenetics.
This volume presents a collection of protocols that describe methodologies to study thermogenic fat biology from various angles. This book is divided into 2 parts. Part 1 focuses on establishing in vitro culture systems. The chapters in this section introduce techniques on how to isolate, culture, and differentiate primary fat cells from both laboratory mice and humans. This part also presents flow cytometry methods to isolate various subpopulations of precursors within the stromal vascular fraction of the adipose tissue, which contains both preadipocytes and immune cells. Part 2 introduces multiple means to genetically manipulate and evaluate brown and beige fat in vivo. The chapters in this section explore methods on bioenergetics analyses both in vitro and in vivo. They also cover how to evaluate thermogenic fat contents and activity in humans, how to culture these cells though interdisciplinary approaches, and how to use thermogenic fat cell lines to carry out drug screens. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Thermogenic Fat: Methods and Protocols is a valuable resource for both experts and novices who are interested in learning assays and investigating brown and beige fat functions.
At some point in their careers, virtually every scientist and technician, as well as many medical professionals, regardless of their area of specialization have a need to utilize cell culture systems. Updating and significantly expanding upon the previous editions, Basic Cell Culture Protocols, Fourth Edition provides the novice cell culturist with sufficient information to perform the basic techniques, to ensure the health and identity of their cell lines, and to be able to isolate and culture specialized primary cell types. The intent of this extensive volume is to generate a valuable resource containing clear methodologies pertinent to current areas of investigation, rather than attempting to educate cell culturists on specific cell types or organ systems. It is written in the highly successful Methods in Molecular Biology trademark], chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and up-to-date, Basic Cell Culture Protocols, Fourth Edition compiles the essential techniques needed to approach this vital laboratory activity with full success.
Hepatobiliary cancer refers to primary malignant tumors originating in cells of the liver, bile ducts, and gallbladder. Globally, primary liver cancer, which includes hepatocellular carcinoma (~75 % of all cases) and intrahepatic biliary cancer or cholangiocarcinoma (~10-15 % 0f all cases) is the 6th most commonly diagnosed cancer and 3rd leading cause of cancer deaths worldwide. The vast majority of these highly malignant cancers are diagnosed at an advanced stage where treatment options are limited and patient survival outcomes are poor. The biological and therapeutic challenges posed by hepatobililiary cancers such as hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are daunting, emphasizing a critical need to review and assess current and evolving basic, translational, and clinical research focused on addressing the critical obstacles that continue to limit progress towards achieving significant improvements in HCC and CCA clinical management and patient survival outcomes. Towards this goal, this special edition of Advances in Cancer Research is focused on providing a comprehensive, timely and authoritative reviews covering such topics of significant scientific and clinical relevance, including hepatobiliary cancer risk mechanisms and risk-predictive molecular biomarkers; causes and functional intricacies of inter- and intratumor heterogeneity; novel insights into the role of tumor microenvironment and key signaling pathways in promoting hepatobiliary cancer progression, therapeutic resistance and immunosuppression; emerging biomarkers of HCC and CCA prognosis; advances in molecular genomics for personalizing tumor classification and targeted therapies; innovative preclinical cell culture modeling for hepatobiliary cancer drug discovery; and current and emerging trends in hepatobiliary cancer molecular therapeutic targeting and immunotherapies.
There has been a dramatic increase in knowledge of tight junctions in the past decade. The molecular structure of tight junctions, cellular functions and the pathophysiological roles of tight junctions are becoming clear. Of the most important functions, the role of the cellular structure in cancer spread and drug delivery are increasingly realised. It is now clear that there are fundamental changes to tight junctions during the process of cancer development. Tight junctions are also critical to the metastatic process of cancer cells. The cellular structure is also crucial in drug therapies, namely, the permeability and bioavailability of the drugs, penetration of barriers such as the blood brain barrier. This current volume aims to summarise the current knowledge of tight junctions, their role in cancer and cancer metastasis and is of interest to scientists and clinicians.
Methods in Cancer Stem Cell Biology: Part B, Volume 171 in the Methods in Cell Biology series highlights advances in the field, with this new volume presenting interesting chapters on timely topics, including Orthotopic brain tumor models derived from glioblastoma stem-like cells, RNA sequencing in hematopoietic stem cells, Generation of inducible pluripotent stem cells from human dermal fibroblasts, In vitro preparation of dental pulp stem cell grafts combined with biocompatible scaffolds for tissue engineering, Gene expression knockdown in chronic myeloid leukemia stem cells, Identification and isolation of slow-cycling GSCs, Assessment of CD133, EpCAM, and much more.
As with other areas of biological research, the progress that has been made over the past 25 years in the field of cell adhesion is impressive. In the late 1970s, the searchfor specific cell surface receptors for adhesion processes was initiated - ing mainly biochemical and immunological approaches. Since then, theint- duction of novel methods of cellular and molecular biology and powerful te- niques for manipulatinggene expression in transgenic and knock-out mice have greatlyadvanced the field. Not only dowe now know the precise molecular structure of many of thecell adhesion receptors that were postulated to exist in the early days, but we have a clear picture of their function, and evidence of their involvement in signal transduction. We have also found clues to the role of cell adhesion in normal embryonal development and adult physiology, and we have evidence that disturbance in cell adhesion can cause disease. In this volume, our goal was to provide an overview of the main topics of c- rent cell adhesion research, including structural analyses of cell adhesion mo- cules and studies of their functionalrole in vitroand in vivo. We have focussed mainly on the four major families of cell-adhesion receptors, i. e. the cadherins, the integrins, the Ig superfamily and the selectin-based adhesion system. The chapters by Perez and Nelson and Choi and Weis describethe structuralbasis of cadherin function, focussing on the extracellular domain of cadherins and thecytoplasmic tail interactions with catenins, respectively.
This is the first broad treatment of carbohydrate chemistry in many years, and presents the structures, reactions, modifications, and properties of carbohydrates. Woven throughout the text are discussions of biological properties of carbohydrates, their industrial applications, and the history of the field of carbohydrate chemistry. Written for students as well as practising scientists, this textbook and handy reference will be of interest to a wide range of disciplines: biochemistry, chemistry, food and nutrition, microbiology, pharmacology, and medicine.
Endocytosis and vesicular trafficking determine the landscape of the cell's exterior, namely the density of surface molecules, such as receptors for growth factors and cytokines, adhesion molecules like integrins and cadherins, and a plethora of nutrient carriers. Hence, endocytosis is involved in signal transduction, cell adhesion and migration, as well as metabolism. To exploit these fundamental processes, malignancies subtly and multiply manipulate the endocytosis and the subsequent trafficking of protein cargoes. This is achieved by simultaneously altering the cytoskeleton, vesicle budding, cargo sorting and intracellular degradation. By highlighting the underlying molecular processes and concentrating on specific examples, this book reviews the recent emergence of derailed endocytosis and vesicular trafficking as a landmark of cancer. In-depth understanding of this common feature of tumors might lead the way to drug-induced strategies, able to rectify intracellular trafficking in cancer.
The present book gives an overview on the similarities and differences of the various translation systems. Moreover, it highlights the mechanisms and control of translation in mitochondria and other organelles such as chloroplasts, plastids and apicoplasts in different organisms. Lastly, it offers an outlook on future developments and applications that might be made possible by a better understanding of translation in mitochondria and other organelles. "
This volume covers protocols related to both pluripotent and somatic stem cells, including the ethical procurement of tissues and cells for the provision of "seed stock," standardized methods for deriving hESCs and iPSCs, isolating mesenchymal stem cells, cell culture and cryopreservation, in addition to quality assurance and information management. Stem Cell Banking: Concepts and Protocols aims to contribute to the development of this field by providing information that is essential to establishing a bona fide stem cell bank. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Stem Cell Banking: Concepts and Protocols is a valuable resource for stem cell scientists and novices to the field, and will help strengthen and maximize their use of existing and future stem cell resources.
This volume covers the current knowledge base on the role of signaling and environmental pathways that control the normal development of germline stem cells, meiotic progression of oocytes, events of oocyte maturation and fertilization, and the birth of an embryo. Germ cells are uniquely poised to sustain life across generations through the fusion of oocyte and sperm. Because of the central importance of germ cells to life, much work has been dedicated to obtaining a clear understanding of the molecular and signaling events that control their formation and maintenance. Germ cells are set aside from somatic cells in the embryo and go through specialized meiotic cell cycles as the animal matures. These cell cycles are interspersed with long periods of arrest. In human females, meiosis I is initiated in the fetus. At birth, oocytes are arrested in meiosis I; after puberty, every month an oocyte initiates meiosis II - ovulation. Upon sperm availability these cells are fertilized, generate an embryo, and the cycle-of-life continues. During meiotic I progression and arrest, the fitness of oocytes and their progeny are likely influenced by environmental cues and signaling pathways. A lot of recent work has focused on understanding the mechanisms that regulate oocyte fitness and quality in humans and vertebrates. Much of our understanding on the events of meiosis I and germline stem cell populations comes from work in invertebrates, wherein the germline stem cells produce oocytes continuously through adult development. In both inverbrates and vertebrates nutritional and signaling pathways control the regulation of stem cells in such a manner so as to couple production of gametes with the nutritional availability. Additionally, mature oocytes arrest both in meiosis I and meiosis II, and signaling and nutritional pathways have been shown to regulate their formation, and maintenance, such that despite long periods of arrest, the oocyte quality is assured and errors in chromosome segregation and varied cytoplasmic events are minimal.
Biological membranes play a central role in cell structure, shape and functions. However, investigating the membrane bilayer has proved to be difficult due to its highly dynamic and anisotropic structure, which generates steep gradients at the nanometer scale. Due to the decisive impact of recently developed fluorescence-based techniques, tremendous advances have been made in the last few years in our understanding of membrane characteristics and functions. In this context, the present book illustrates some of these major advances by collecting review articles written by highly respected experts. The book is organized in three parts, the first of which deals with membrane probes and model membranes. The second part describes the use of advanced quantitative and high-resolution techniques to explore the properties of biological membranes, illustrating the key progress made regarding membrane organization, dynamics and interactions. The third part is focused on the investigation of membrane proteins using the same techniques, and notably on the membrane receptors that play a central role in signaling pathways and therapeutic strategies. All chapters provide comprehensive information on membranes and their exploration for beginners in the field and advanced researchers alike.
Mitochondria as a Key Intracellular Target of Thallium Toxicity presents a new hypothesis that explains the decrease in antioxidant defense of thallium poisoning and proposes a new model for studying the transport of inorganic cations across the inner mitochondrial membrane. Readers will learn about the toxicity of thallium and its compounds, the toxicology of thallium, the toxic thallium effects on cells, and the effects of thallium on mitochondria. In addition, the book lists the pathways and mechanisms of thallium transport into cells and mitochondria, including information on toxicity that has been analyzed at both the cellular and subcellular levels. The increase in human contact with the toxic trace element thallium is associated with industry development, the release of metal into the environment from various rocks, and the use of special isotope techniques for studying the vascular bed.
Intriguing new findings on how genes and environments work together through different stages of life take the spotlight in this significant collection. Studies from infancy to late adulthood show both forces as shaping individuals' relationships within family and non-family contexts, and examine how these relationships, in turn, continue to shape the individual. Transitional periods, in which individuals become more autonomous and relationships and personal identities become more complicated, receive special emphasis. In addition, chapters shed light on the extent to which the quantity and quality of genetic and environmental influence may shift across and even within life stages. Included in the coverage: Gene-environment interplay in parenting young children. The sibling relationship as a source of shared environment. Gene-environment transactions in childhood and adolescent problematic peer relationships. Toward a developmentally sensitive and genetically informed perspective on popularity. Spouse, parent, and co-worker: roles and relationships in adulthood. The family system as a unit of clinical care: the role of genetic systems. Behavioral geneticists, clinical psychologists, and family therapists will find in Gene-Environment Interplay in Interpersonal Relationships across the Lifespan a window into current thinking on the subject, new perspectives for understanding clients and cases, and ideas for further study.
Reviews the state of research on the physiology of yeast stress responses and signal transduction pathways in yeast. Coverage includes adaptation to nutrient depletion in the yeast, stationary phase in the yeast saccharomyces cerevisiae, the yeast shock response, the response of yeast to osmotic stress, crucial factors in salt stress tolerance, ox
Examining stem cell biology from a philosophy of science perspective, this book clarifies the field's central concept, the stem cell, as well as its aims, methods, models, explanations and evidential challenges. The first chapters discuss what stem cells are, how experiments identify them, and why these two issues cannot be completely separated. The basic concepts, methods and structure of the field are set out, as well as key limitations and challenges. The second part of the book shows how rigorous explanations emerge from stem cell experiments, and compares these to other kinds of scientific explanation. Model organisms, the role of genes, and the significance of collaboration are also discussed. The last part of the book considers relations to systems biology and clinical medicine, arguing that both the mathematical models of the former, and ethical principles of the latter, are necessary for stem cell biology to deliver on its promises.
In plant cells, the plasma membrane is a highly elaborated structure that functions as the point of exchange with adjoining cells, cell walls and the external environment. Transactions at the plasma membrane include uptake of water and essential mineral nutrients, gas exchange, movement of metabolites, transport and perception of signaling molecules, and initial responses to external biota. Selective transporters control the rates and direction of small molecule movement across the membrane barrier and manipulate the turgor that maintains plant form and drives plant cell expansion. The plasma membrane provides an environment in which molecular and macromolecular interactions are enhanced by the clustering of proteins in oligimeric complexes for more efficient retention of biosynthetic intermediates, and by the anchoring of protein complexes to promote regulatory interactions. The coupling of signal perception at the membrane surface with intracellular second messengers also involves transduction across the plasma membrane. Finally, the generation and ordering of the external cell walls involves processes mediated at the plant cell surface by the plasma membrane. This volume is divided into three sections. The first section describes the basic mechanisms that regulate all plasma membrane functions. The second describes plasma membrane transport activity. The final section of the book describes signaling interactions at the plasma membrane. These topics are given a unique treatment in this volume, as the discussions are restricted to the plasma membrane itself as much as possible. A more complete knowledge of the plasma membrane's structure and function is essential to current efforts to increase the sustainability of agricultural production of food, fiber, and fuel crops.
Recently, expectations of the potential of regenerative medicine have risen because of the exciting results obtained in various areas of research. This book contains contributions from leading researchers in the field who describe their successes and the problems that remain in converting the hopes into concrete therapies. The focus of the book is on the role of stem cells in two main areas -- reproduction and the brain -- described from molecular, cellular, in vivo and clinical perspectives.
A number of chapters present the most novel research on testicular and epididymal functions or on more general fields of hormone action and molecular cell biology as it is now a tradition. However, exceptionally, the book also contains several chapters dealing with the "Approaches and Tools in the Third Millenium." The unusual inclusion of technologies as such in the 2000 edition of the workshop was an absolute necessity, as these technologies are revolutionizing the fields of biology and medicine and, in many instances, how to do research. This volume gives the scientific community essential information about the very latest technical developments and their potential for future progress.
"After being frequently urged to write upon this subject, and as often declining to do it, from apprehension of my own inability, I am at length compelled to take up the pen, however unqualified I may still feel myself for the task. " William Withering, M. D. ' I have yet to find a description or a quote that better summanzes my initial ambivalence towards embarking on such an endeavor as partici pating in putting together this monograph. The impetus for The Red-Cell has been a simple, genuine Membrane: A Model for Solute Transport desire to bring together an authoritative account of the' 'state of the art and knowledge" in the red-ceIl-membrane transport field. In particular, it seems important to emphasize the pivotal role the red cell has played for several decades in the discovery and the elucidation of mechanisms of plasma-membrane transport processes. It is only with such knowledge that we can hope to push ahead and make progress in this exciting, multifaceted area. Eventually, one hopes to not only further our knowledge of red cells, but apply the newly gained insights to any other of the plasma membrane. cell with the common denominator In this compendium of reviews, the reader will find that the term model will take on a variety of gists and meanings. In some chapters, the red cell has been chosen as a model membrane solely on the basis of its preeminent design and simplicity."
Agrobacterium tumefaciens is a soil bacterium that for more than a century has been known as a pathogen causing the plant crown gall disease. Unlike many other pathogens, Agrobacterium has the ability to deliver DNA to plant cells and permanently alter the plant genome. The discovery of this unique feature 30 years ago has provided plant scientists with a powerful tool to genetically transform plants for both basic research purposes and for agricultural development. Compared to physical transformation methods such as particle bomba- ment or electroporation, Agrobacterium-mediated DNA delivery has a number of advantages. One of the features is its propensity to generate a single or a low copy number of integrated transgenes with defined ends. Integration of a single transgene copy into the plant genome is less likely to trigger "gene silencing" often associated with multiple gene insertions. When the first edition of Agrobacterium Protocols was published in 1995, only a handful of plants could be routinely transformed using Agrobacterium. Agrobacterium-mediated transformation is now commonly used to introduce DNA into many plant species, including monocotyledon crop species that were previously considered non-hosts for Agrobacterium. Most remarkable are recent developments indicating that Agrobacterium can also be used to deliver DNA to non-plant species including bacteria, fungi, and even mammalian cells.
Since the first international meeting on Vitamin B6 involvement in catalysis took place in 1962, there have been periodic meetings every three or four years. In 1990, scientists studying another cofactor, PQQ, which had already attracted the scientific community's interest for its possible involvement in amino acid decarboxylation and reactions involving amino groups, joined forces with those investigating pyridoxal phosphate-dependent enzymes. Since then, the international PQQ/quinoproteins meetings have been held jointly. In the years following the original meeting 37 years ago in Rome, Italy, the scientific gatherings have taken place in Moscow, Russia (1966); Nagoya, Japan (1967); Leningrad (St. Petersburg), Russia (1974); Toronto, Canada (1979); Athens, Greece (1983); Turku, Finland (1987); Osaka, Japan (1990); and Capri, Italy (1996). For the first time in the history of these symposia, the international meeting was held in the United States, from October 31 through November 5, 1999, in Santa Fe, New Mexico. The scientific program focus shifted significantly beyond the original emphasis on catalysis to aspects such as cellular and genetic regulation of events involving proteins that require pyridoxal phosphate or quinoproteins. The growing awareness of the involvement of these proteins in biotechnology processes and fundamental physiological events, as well as their implication in diseases, was also represented, with emphasis on the molecular basis of these events. The meeting was symposium S278, sponsored by the International Union of Biochemistry and Molecular Biology (IUBMB).
Dr. Spirin is a world authority on ribosomes and has published two earlier books in this area in English. This text is for advanced undergraduates and beginning graduate students and will cover the structure, function, and biosynthesis of ribosomes. Ribosomes are important in protein synthesis, which is currently a hot topic in many different areas of research. |
You may like...
The Chemical Dialogue Between Plants and…
Vivek Sharma, Richa Salwan, …
Paperback
R3,943
Discovery Miles 39 430
Molecular Imaging - Principles and…
Brian D. Ross, Sanjiv S. Gambhir
Hardcover
R8,173
Discovery Miles 81 730
Encyclopedia of Cell Biology
Ralph A. Bradshaw, Philip D. Stahl, …
Hardcover
R60,861
Discovery Miles 608 610
RNA Methodologies - A Laboratory Guide…
Robert E. Farrell Jr
Paperback
R3,455
Discovery Miles 34 550
Membranes in Pulmonary Vascular Disease…
Patrick Belvitch, Steven Dudek
Hardcover
R4,414
Discovery Miles 44 140
|