![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Cellular biology > General
"International Review of Cell & Molecular Biology" presents
current advances and comprehensive reviews in cell biology both
plant and animal. Articles address structure and control of gene
expression, nucleocytoplasmic interactions, control of cell
development and differentiation, and cell transformation and
growth.
The natural killer NK] cell plays a critical role in regulating
the innate and adaptive immune response to pathogens, injury and
stress. It has emerged as a cell capable of helper function,
expansion, contraction, and accelerated memory responses - features
similar to other adaptive immune cells. It is a professional
accelerator of immunity, mediating dendritic cell maturation and
its precursors critical for the origin and development of secondary
lymph node structures. These characteristics place the NK cell in a
unique position, with a major role in sculpting the host response
to damage and injury. This volume is the first complete and
authoritative reference to explore these emergent, exciting aspects
of the NK cell, placing it at the center of damage/danger
recognition and the response to stress. "Natural Killer Cells"
details NK cell biology, the role of NK cells in regulating
immunity through interactions with other cells and tissues, the
participation of NK cells in disease and special topics in NK
biology. - Provides a broad, detailed coverage of the biology and interactions of NK cells for students, fellows, scientists, and practitioners - Includes figures, histologic sections, and illustrations of the ontogeny of NK cells - Companion website includes full-color image database
"International Review of Cell & Molecular Biology" presents
current advances and comprehensive reviews in cell biology-both
plant and animal. Articles address structure and control of gene
expression, nucleocytoplasmic interactions, control of cell
development and differentiation, and cell transformation and
growth.
A great fascination for biologists, the study of embryo development provides indispensable information concerning the origins of the various forms and structures that make up an organism, and our ever-increasing knowledge gained through the study of plant embryology promises to lead to the development of numerous useful applications. In Plant Embryo Culture: Methods and Protocols, expert researchers from the field provide a ready source of information for culturing zygotic embryos for different types of studies, both theoretical and practical. The book's main sections examine a wide range of related topics, including the culture of zygotic embryos for developmental studies, the application of embryo culture techniques focusing on embryo rescue methods, cryopreservation of zygotic embryos, the use of zygotic embryos as explants for somatic embryogenesis and organogenesis, as well as transformation protocols using zygotic embryos as starting material. Written in the highly successful Methods in Molecular Biology (TM) series format, the detailed chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and vital notes on troubleshooting and avoiding known pitfalls. Authoritative and convenient, Plant Embryo Culture: Methods and Protocols serves as a key reference that can be used by scientists of all backgrounds to help develop their own customized methods for many different species and for a variety of purposes.
Ataxia-telangiectasia (A-T) is a rare and severe genetic disorder affecting children. A-T is a multisystem disease characterized by progressive neurodegeneration, immunodeficiency and cancer predisposition. This detailed volume explores the ever expanding field of research into the ATM (ataxia-telangiectasia, mutated) gene and the role played by ATM kinase in DNA damage signaling and diverse cellular processes. What follows is a handy desktop reference for both seasoned A-T researchers and postgraduate students, as it demonstrates the breadth of recent developments in A-T studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Both classic and cutting-edge techniques are described, including ATM gene mutation detection, assays for radiosensitivity and radioresistant DNA synthesis, new methods to measure ATM kinase activity by imaging microscopy and high content screening as well as proteomics, phosphoproteomics and bioinformatics approaches to decipher ATM-dependent signalling pathways. Additional methods include generation of patient-specific stem cells and approaches to study ATM functions in the nervous system. Comprehensive and practical, ATM Kinase: Methods and Protocols aims to ignite and attract the interest of colleagues from diverse fields to A-T research in an effort to bring their expertise and fresh ideas to resolve many A-T puzzles still waiting to be pieced together and to alleviate the suffering of A-T children and their families.
Burkholderia are a multi-faceted group of bacteria with considerable genetic and metabolic diversity and very versatile lifestyles. In this book leading international investigators review key advances in Burkholderia research to provide timely overview. The topics covered include: genomic taxonomy and biodiversity, comparative genomics, molecular epidemiology, transcriptomics, proteomics, molecular pathogenesis of virulence in B. mallei/B. pseudomallei and the Burkholderia cepacia complex. The theme underpinning each chapter is the use of DNA/protein sequence data and post-genomic technologies to understand Burkholderia biology.
In this book, the molecular recognition of DNA using small molecules is discussed, with a study of the photochemistry of BrU-labeled DNA. The purposes of the study were to develop small molecules for regenerative medicine, to develop a method to detect the recognition site of small molecules, and to detect the most important biological phenomena using the photochemistry of BrU-labeled DNA. The study began with the design and development of small molecules that can induce pluripotency genes. To deal with the important issue of cell permeability of the original compound, a new analogue of the original with improved gene expression was designed and synthesized. Using the photochemistry of BrU-labeled DNA, crucial biological phenomena such as cooperativity between transcription factors were detected. For the first time, the cooperativity was examined by excess electron transfer assay. DNA was also studied very carefully in order to understand the mechanism of the double-strand break in the UVA micro-irradiation technique. The mechanism of the double strand remained untouched. Nevertheless, the double-strand break mechanism was clearly demonstrated by Hoechst dye, as shown in this book.
"International Review of Cell & Molecular Biology" presents
current advances and comprehensive reviews in cell biology both
plant and animal. Articles address structure and control of gene
expression, nucleocytoplasmic interactions, control of cell
development and differentiation, and cell transformation and
growth.
This second edition is a one-source guide to current information about red blood cell physiology and the action of native and recombinant human erythropoietic factors. Topics in the fields of erythropoiesis, recombinant protein discovery and production, and treatment of patients with anemia due to renal failure, cancer, or chronic diseases are covered. The newest theories in erythropoiesis (receptors, signaling), manufacturing, new formulations, and clinical research are discussed. This book is of interest to researchers and clinical investigators in academia and biotechnology and pharmaceutical companies, to clinical research associates, clinical monitors, and physician investigators.
This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world's foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solutions in the numerical simulation of biologically relevant complex fluid flows This volume will be accessible to advanced undergraduate and beginning graduate students in engineering, mathematics, biology, and the physical sciences, but will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.
"International Review of Cell & Molecular Biology" presents
current advances and comprehensive reviews in cell biology-both
plant and animal. Articles address structure and control of gene
expression, nucleocytoplasmic interactions, control of cell
development and differentiation, and cell transformation and
growth.
Since the discovery of microRNAs, developmental biologists have striven to understand the role of miRNAs in development and disease. MicroRNAs in Development: Methods and Protocols collects contributions from expert researchers in order to provide practical guidelines to this complex study. Divided into three convenient sections, this detailed volume covers various techniques to detect and profile miRNA expression, followed by protocols to manipulate the activity of miRNAs in various organisms, and it concludes with a section that outlines different methods to identify and validate miRNA targets in animals and plants. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, MicroRNAs in Development: Methods and Protocols serves as a practical guide for scientists of all backgrounds and conveys the appropriate sense of fascination associated with this vital field of research.
This work provides a state-of-the art overview on the most relevant aspects of cell polarity. Volume 1 addresses cell polarity and cell migration (front-rear polarity), cell polarity and barrier formation (apico-basal polarity) and neuronal polarity. It particularly focuses on cell polarity at the molecular level and the underlying molecular mechanisms. It also elaborates the common principles and mechanisms that regulate cellular polarization in different cell types and contexts. Both volumes are intended for professors, group leaders and researchers in cell biology as well as medical professionals in the fields of anatomy, cell biology, physiology, pathology and tumor biology.
Cilia--the tiny hairlike structures on the surface of cells--have recently been identified as playing a role in a variety of disease and developmental disorders. Absent or defective cilia in certain cells can cause infertility, blindness, kidney disease, and lung disease. This volume presents recent findings in cilia research and current thought on the role of cilia in disease and developmental abnormalities.
This is the companion volume to Daniel Klionsky's "Autophagy: Lower
Eukaryotes," which features the basic methods in autophagy covering
yeasts and alternative fungi (aspergillus, podospora, magnaporthe).
Klionsky is one of the leading authorities in the field. He is the
editor-in-chief of "Autophagy," The November 2007 issue of "Nature
Reviews" highlighted his article, "Autophagy: from phenomenology to
molecular understanding in less than a decade." He is currently
editing guidelines for the field, with 230 contributing authors,
that will publish in "Autophagy,"
The first of two new volumes covering mitochondria, this volume
presents modern methods that have been developed to examine
mitochondrial electron transport chain complexes, iron-sulfur
proteins and reactive oxygen species. These new techniques provide
investigators with sensitive, original approaches to the study of
disease states associated with mitochondrial malfunction.
Display technologies have become a very powerful way of generating therapeutic lead molecules and specific reagents for increasing our understanding of biology; however, despite being first described shortly after phage display, the use of ribosome display and related methods have been much less widespread. Since this is in part due to the complexity of the methods, "Ribosome Display and Related Technologies: Methods and Protocols" seeks to extend their use by collecting expert contributions describing these detailed protocols. The protocols described range from well-established methods that have been used for a decade to generate high affinity antibodies, which are already in the clinic, to methods that are in their early stages of application such as display of peptides incorporating non-canonical amino acids. Written in the highly successful "Methods in Molecular Biology " series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Invaluable and easy to use, "Ribosome Display and Related Technologies: Methods and Protocols" will be of great benefit to those with general molecular biology or protein engineering experience who wish to select peptides or proteins by display, those with phage display experience who would benefit from the application of ribosome display, as well as those with some ribosome display experience who would like to expand the range of applications to which they are applying the technology."
"International Review of Cell & Molecular Biology" presents
current advances and comprehensive reviews in cell biology-both
plant and animal. Articles address structure and control of gene
expression, nucleocytoplasmic interactions, control of cell
development and differentiation and cell transformation and growth.
Understanding live cells at the single molecule level is the most
important and single major challenge facing biology and medicine
today. Nanobiology focuses on the properties and structure of
complex assemblies of biomolecules biochips and molecular motors,
for example in conjunction with distinctive surfaces, rods, dots,
and materials of nanoscience. Nano Cell Biology will describe the
current applications of nanobiology to the study of the structure,
function, and metabolic processes of cells.
This thesis examines the evidence for regulatory ubiquitination by focusing on A20. It provides an insightful and in-depth evaluation of the current literature by critically examining the evidence of K63-linked regulatory ubiquitination in regulating cell-signalling. It is also the first thesis to directly test the role of regulatory ubiquitination in NF-kB signaling in vivo. The case for regulatory ubiquitination has been to a large extent predicated upon the presumed deubiquitinase activity of A20, long considered a key regulator of inflammatory responses as mice lacking A20 die from multi-organ inflammation and cachexia. The theses reports the creation and characterization of a knock-in mouse that expresses a mutated form of A20 which selectively lacks the deubiquitinase activity. The knock-in mice surprisingly display completely normal NF- B activation with no accompanying inflammatory phenotype. Given that the presumed role of A20 as a deubiquitinase has been used to support the importance of regulatory K63-linked ubiquitination in NF-kB signaling, this study will help focus future research efforts into alternative target pathways that do not depend on K63 ubiquitination. In fact, the work suggests that it might be important to revisit the role of K63-linked polyubiquitination in cell-signalling. Ubiquitin Chains: Degradation and Beyond is essential reading for anyone conducting research in cell-signalling and immunology. Dr. Arnab De received his PhD from the Department of Microbiology & Immunology at Columbia University. During his PhD, he developed transgenic mice to study the mechanism of action of a critical tumor-suppressor called A20. He is also well known for having developed peptide-based prodrugs as therapeutics for diabetes. His work has been reported by the media, and has resulted in multiple patents and publications in peer reviewed journals. He presented his findings at the American Peptide Symposium and was awarded the Young Investigator's Award. He is the author of the book entitled Application of Peptide-Based Prodrug Chemistry in Drug Development, with a foreword written by Professor Jean Martinez (Former President, European Peptide Society) and published in the series SpringerBriefs in Pharmaceutical Science & Drug Development. His research interests lie at the intersection of chemistry and medicine. Besides biomedical research, he is also generally interested in public health policy and general scientific outreach.
The field of genetics is rapidly evolving and new medical breakthroughs are occurring as a result of advances in knowledge gained from genetics research. This series continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines.
Specific complexes of protein and RNA carry out many essential
biological functions, including RNA processing, RNA turnover, RNA
folding, as well as the translation of genetic information from
mRNA into protein sequences. Messenger RNA (mRNA) decay is now
emerging as an important control point and a major contributor to
gene expression. Continuing identification of the protein factors
and cofactors, and mRNA instability elements, responsible for mRNA
decay allow researchers to build a comprehensive picture of the
highly orchestrated processes involved in mRNA decay and its
regulation.
Volume 3 of Biomembranes covers receptors of cell adhesion and
cellular recognition. Proteins in the plasma membrane of cells are
heavily involved in processes of cell adhesion, but such proteins
were not actually isolated and characterized until the mid-1970s.
Since then, application of the methods of molecular biology has led
to the recognition of four major classes of cell adhesion molecule
(CAMs), the immunoglobulin super family, the cadherins, the
integrins, and the selecting. A convenient system in which to study
the importance of cell adhesion is in blood platelets where
aggregation eventually leads to thrombus formation in a process
involving a range of surface glycoproteins. Interaction with the
extracellular matrix is exemplified by CD44, the receptor for
hyaluronan, and a complex carbohydrate that is a major component of
the extracellular matrix surrounding migrating and proliferating
cells. Membrane-associated mucins have a variety of effects on cell
adhesion. The super family of immunoglobulin related proteins also
include the T cell receptors and the major histocompatibility
complex (MHC), which, together with the receptors for
immunoglobulins (the Fc receptors), are of fundamental importance
in the processes of immunity. Volume 3 of Biomembranes explores the
structures and functions of the molecules involved in these
important functions of the cell.
Developed for a range of tissues where the culture environment takes into account the spatial organization of the cells therein, 3D cell culture models serve to bridge the gap between in vivo studies at one extreme with that of simple cell monolayers at the other. In 3D Cell Culture: Methods and Protocols, international experts describe a number of basic and applied methodologies taken from a breadth of scientific and engineering disciplines, many of which deal with direct applications of 3D culture models, most notably in the formation of tissues for clinical purpose. Beginning with an overview of the biological and materials scaffold requirements for successfully creating 3D models, the book delves into topics such as general scaffold design and fabrication techniques, models for bone, skin, cartilage, nerve, bladder, and hair follicles, and chapters on bioreactor design, imaging, and stem cells. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective subjects, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, 3D Cell Culture: Methods and Protocols serves as a basic manual for laboratory-based scientists who not only need to have a comprehensive range of techniques contained within a single text but also require techniques described using a standard, convenient format.
This detailed volume presents a comprehensive technical overview of DNA nanotechnology with an emphasis on 3D DNA nanostructure design and applications. Coverage spans from basic design principles for DNA and RNA nanostructures to their cutting-edge applications in a variety of fields, with the book divided into basic DNA and RNA nanostructure design strategies as well as applications utilizing DNA nanostructures, including but not limited to nanomedicine, bioimaging, biosensing, nanoplasmonics, nanoelectronics, nanofabrication, crystallography, biophysics, and analytical chemistry. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, 3D DNA Nanostructure: Methods and Protocols provides the most up-to-date tutorial style overviews and technical style protocols to benefit researchers in a wide variety of areas. |
You may like...
|