![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Cellular biology > General
This thesis reports on a novel system for extracellular recordings of the activity of excitable cells, which relies on an organic, charge-modulated field-effect transistor (FET) called OCMFET. The book shows how, thanks to the intrinsic biocompatibility, lightness, and inexpensiveness of the material used, this new system is able to overcome several problems typical of of "classic" electronic and bioelectronic. It provides a full description of the system, together with a comprehensive report of the successful experimental trials carried out on both cardiac and nerve cells, and a concise yet comprehensive overview of bioelectronic interfaces and organic sensors for electrophysiological applications.
This volume provides a broad collection of protocols for many of the common experimental techniques used for the characterization of P-type ATPases. P-Type ATPases: Methods and Protocols provides comprehensive practical instructions for all researchers in the P-type ATPase field, from the protein biochemist to the mouse geneticist, covering the identification and classification, isolation, purification, in vitro characterization, knock-out studies, as well as crystallization and structural analysis. Written for the Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, P-Type ATPases: Methods and Protocols aims to ensure successful results in the further study of this vital field of research.
This new volume of "Methods in Cell Biology" looks at lipid droplets LDs, covering sections on analyses of LDs in model systems, cell/tissue-specific analyses of LDs and imaging and in vitro analyses of LD biogenesis and growth. Chapters are written by experts in the field. With cutting-edge material, this comprehensive collection is
intended to guide researchers of LDs for years to come. Chapters are written by experts in the field Cutting-edge material
This new volume of "Methods in Enzymology" continues the legacy
of this premier serial with quality chapters authored by leaders in
the field. This volume covers cilia and includes chapters on such
topics as methods for studying ciliary polarity in Xenopus,
analysis of signaling pathways in mammalian spermatozoa, and
biochemical and physiological analysis of axonemal dyneins.
This book offers in a single volume a unique collection of the state-of the-art experimental procedures utilized for the induction, detection, and modeling of this complex cellular program of oncogene-induced senescence. The book encompasses protocols for studying this multi-step program in human specimens and a variety of experimental models including cultured mammalian cells, laboratory mice, and Drosophila melanogaster, as well as offering a description of high throughput approaches. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Oncogene-Induced Senescence: Methods and Protocols represents a valuable asset for a wide audience of medical oncologists and researchers in the fields of oncology, molecular and cellular biology, biochemistry, and animal development.
This new volume of "Methods in Enzymology" continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers cilia and includes chapters on such topics as electron microscopy of IFT in cilia and flagella, radial spoke isolation and assays, and biomechanical measurements of kinocilium. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers ciliaContains chapters on such topics as electron microscopy of IFT in cilia and flagella, radial spoke isolation and assays, and biomechanical measurements of kinocilium
In multicellular organisms, communication between cells involves secretion of proteins that bind to receptors on neighboring cells. While this has been well documented, another mode of intercellular communication has recently become the subject of increasing interest: the release of exosomes. In cancer, tumor exosomes are involved in various aspects of pathogenesis, including proliferation, immunosuppression, and metastasis. Given the ability of exosomes to export unneeded endogenous molecules from cells, these structures hold great potential as anticancer therapeutic agents. They are also being studied as prognostic markers for cancer.
Understanding the importance and necessity of the role of autophagy in health and disease is vital for the studies of cancer, aging, neurodegeneration, immunology, and infectious diseases. Comprehensive and forward thinking, these books offer a valuable guide to both cellular processes while inciting researchers to explore their potentially important connections. Considering that autophagy is associated with numerous biological processes, including cellular development and differentiation, cancer (both antitumor and protumor functions), immunity, infectious diseases, inflammation, maintenance of homeostasis, response to cellular stress, and degenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and prion diseases, there is a great need to understanding its role. Cell homeostasis is achieved by balancing biosynthesis and cellular turnover. In spite of the increasing importance of autophagy in various pathophysiological situations (conditions) mentioned above, this process remains underestimated and overlooked. As a consequence, its role in the initiation, stability, maintenance, and progression of these and other diseases (e.g., autoimmune disease) remains poorly understood. Volumes in the Series Volume 1: Molecular Mechanisms. Elucidates autophagy's association with numerous biological processes, including cellular development and differentiation, cancer, immunity, infectious diseases, inflammation, maintenance of homeostasis, response to cellular stress, and degenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and prion diseases. Volume 2: Role in General Diseases. Describes the various aspects of the complex process of autophagy in a myriad of devastating human diseases, expanding from a discussion of essential autophagic functions into the role of autophagy in proteins, pathogens, immunity, and general diseases. Volume 3: Role in Specific Diseases. Explores the role of autophagy in specific diseases and developments, including: Crohn's Disease, Gaucher Disease, Huntington's Disease, HCV infection, osteoarthritis, and liver injury, with a full section devoted to in-depth exploration of autophagy in tumor development and cancer, as well as the relationship between autophagy and apoptosis. Volume 4: Mitophagy. Presents detailed information on the role of mitophagy, the selective autophagy of mitochondria, in health and disease, by delivering an in-depth treatment of the molecular mechanisms involved in mitophagy initiation and execution, as well as the role of mitophagy in Parkinson Disease, cardiac aging, and skeletal muscle atrophy. Volume 5: Role in Human Diseases. Comprehensively describes the role of autophagy in human diseases, delivering coverage of the antitumor and protumor roles of autophagy; the therapeutic inhibition of autophagy in cancer; and the duality of autophagy's effects in various cardiovascular, metabolic, and neurodegenerative disorders. Volume 6: Regulation of Autophagy and Selective Autophagy. Provides coverage of the mechanisms of regulation of autophagy; intracellular pathogen use of the autophagy mechanism; the role of autophagy in host immunity; and selective autophagy. Volume 7: Role of Autophagy in Therapeutic Applications. Provides coverage of the latest developments in autophagosome biogenesis and regulation; the role of autophagy in protein quality control; the role of autophagy in apoptosis; autophagy in the cardiovascular system; and the relationships between autophagy and lifestyle. Volume 8: Autophagy and Human Diseases. Reviews recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, and introduces new, more effective therapeutic strategies, in the development of targeted drugs and programmed cell death, providing information that will aid on preventing detrimental inflammation. Volume 9: Necrosis and Inflammation in Human Diseases. Emphasizes the role of Autophagy in necrosis and inflammation, explaining in detail the molecular mechanism(s) underlying the formation of autophagosomes, including the progression of Omegasomes to autophagosomes.
This volume presents up-to-date methods that allow primary stem cells from a variety of sources to be isolated, cultured in vitro, detected and measured for specific applications. These applications range from those in basic, stem cell and veterinary research to toxicology, cellular therapy and regenerative medicine. There is a slight bias towards the blood-forming system as more is known about the blood-forming or hematopoietic system than any other primary stem cell system. These unique properties and characteristics are discussed and examined, mostly at the cellular level and in detail in this book. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Stem Cell Protocols provides novices with the fundamentals necessary to develop new technologies necessary for basic and clinical research in the future, and will aid professionals in finding new methodologies to provide a wider viewpoint and an even greater scope for their own research.
"An Introduction to Biological Membranes: From Bilayers to
Rafts" covers many aspects of membrane structure/function that
bridges membrane biophysics and cell biology. Offering cohesive,
foundational information, this publication is valuable for advanced
undergraduate students, graduate students and membranologists who
seek a broad overview of membrane science.
Biobanking, an emerging field supported by academia, industry and health administrators alike, is distinctly different today from the practice that once defined it. The science of Biobanking, which initially involved simply storing blood or tissue samples in a freezer, is now a highly sophisticated field of research, and expected to grow exponentially over the next decade or two. This book aims to serve the purpose of further enriching the available literature on Biobanking, by offering unique and more useful collection of ideas for the future. The book outlines the experiences of developing modern Biobanking repositories in different countries, whilst covering specific topics regarding the many aspects of Biobanking. This book will be of interest to a wide range of readers including: academics, students, volunteers and advocates of patients' rights.
The aim of this volume is to merge classical concepts of plant cell biology with the recent findings of molecular studies and real-world applications in a form attractive not only to specialists in the realm of fundamental research, but also to breeders and plant producers. Four sections deal with the control of development, the control of stress tolerance, the control of metabolic activity, and novel additions to the toolbox of modern plant cell biology in an exemplary and comprehensive manner and are targeted at a broad professional community. It serves as a clear example that a sustainable solution to the problems of food security must be firmly rooted in modern, continuously self re-evaluating cell-biological research. No green biotech without green cell biology. As advances in modern medicine is based on extensive knowledge of animal molecular cell biology, we need to understand the hidden laws of plant cells in order to handle crops, vegetables and forest trees. We need to exploit, not only empirically, their astounding developmental, physiological and metabolic plasticity, which allows plants to cope with environmental challenges and to restore flexible, but robust self-organisation.
Cell biology spans among the widest diversity of methods in the biological sciences. From physical chemistry to microscopy, cells have given up with secrets only when the questions are asked in the right way This new volume of "Methods in Cell Biology" covers laboratory methods in cell biology, and includes methods that are among the most important and elucidating in the discipline, such as bioluminescent imaging of gene expressions, confocal imaging, and electron microscopy of bone. Covers the most important laboratory methods in cell biologyChapters written by experts in their fields"
This invaluable resource delineates procedures for development and use of stem cells in the laboratory and explores the potential for clinical applications. The text discusses mesenchymal stem cell isolation, isolation of adipose derived stem cells, new trends of induced pluripotent stem cells in disease treatment, cord blood banking, future directions of the discussed therapies and much more. The chapters are contributed by preeminent scientists in the field and present a comprehensive picture of stem cell processes, from development in the laboratory to effects and side-effects of clinical application. Stem Cell Processing and the other books in the Stem Cells in Clinical Applications series, edited by Dr. Phuc Van Pham, is essential reading for scientists, researchers, advanced students and clinicians working in stem cells, regenerative medicine or tissue engineering.
In "Plant Metabolic Flux Analysis," expert researchers in the field provide detailed experimental procedures for each step of the flux quantification workflow. Steady state and dynamic modeling are considered, as well as recent developments for the reconstruction of metabolic networks and for a predictive modeling. Written in the highly successful "Methods in Molecular Biology "series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical" Plant Metabolic Flux Analysis," seeks to aid scientists in the further study of cutting-edge protocols and methodologies that are crucial to getting ahead in MFA.
Fall-induced hip fracture is an epidemic health risk among elderly people. This book presents an image-based multilevel modeling approach to understanding the biomechanics involved in fall-induced hip fracture. By hierarchically integrating a body-level dynamics model, a femur-level finite element model, and a local bone failure model, the biomechanics approach is able to simulate all stages in sideways falls and to incorporate all biomechanical variables affecting hip fracture. This book is useful for clinicians to accurately evaluate fracture risk, for biomechanical engineers to virtually test hip protective devices, and for biomedical students to learn image-based biomechanical modeling techniques. This book also covers: Biomechanical viewing on bone composition, bone remodeling, and bone strength Bone imaging and information captured for constructing biomechanical models Bone mechanical testing and mechanical properties required for biomechanical modeling
Prominin-1 or otherwise known as CD133 is a glycoprotein that is present in humans and mice. Since the first description of prominin in 1997, in mouse neuroepithelial cells and in human hematopoietic stem cells as AC133 antigen, this molecule has aroused a large interest especially, as a stem cell marker, that gave rise to an ever growing body of publications and more recently its expression in cancer stem cells. Controversies as to its role as a cancer stem and its detection in different models, as well as its use as a prognostic marker have emerged. Yet, beyond its use as a stem cell and cancer stem cell marker, prominin-1/CD133 displays unique biological features and appears of importance in other processes like for example in retinal biogenesis. Indeed, this five-transmembrane plasma membrane glycoprotein, which marks membrane protrusions is associated with several essential processes like cell polarity, asymmetric cell division and membrane remodeling. We propose to review current knowledge about this intriguing molecule and present pertinent information to determine the biological role of prominins and assess their importance in medicine and cancer research. The primary audience for this book is geared towards scientists and researchers with interest in cancer stem cells, stem cells, cell biology, neurobiology, and regenerative medicine.
For many years, it has been known that when rats and mice are given a reduced amount of food, their life span is increased and they remain healthy and vigorous at advanced ages. What is the reason for this change in the usual pattern of
aging? The evidence is overwhelming that the life extension results
from a slowing of aging processes. And the factor responsible is
the decrease in caloric intake. The obvious question: How does this
factor work? A good question - and the reason that research on the
anti-aging action of caloric restriction is today one of the most
studied research areas in biological gerontology. For it is felt
that if the biological mechanisms of the anti-aging action of
caloric restriction can be uncovered, we would gain an
understanding of the basic nature of aging processes, which would,
in turn, yield possible interventions in human aging. This book
aims to provide the growing number of researchers in this field
(faculty, postdoctoral trainees, and graduate students) with a
detailed knowledge of what is known about caloric restriction
within the frame of gerontology, as well as insights on future of
this field.
A number of techniques to study ion channels have been developed since the electrical basis of excitability was first discovered. Ion channel biophysicists have at their disposal a rich and ever-growing array of instruments and reagents to explore the biophysical and structural basis of sodium channel behavior. Armed with these tools, researchers have made increasingly dramatic discoveries about sodium channels, culminating most recently in crystal structures of voltage-gated sodium channels from bacteria. These structures, along with those from other channels, give unprecedented insight into the structural basis of sodium channel function. This volume of the Handbook of Experimental Pharmacology will explore sodium channels from the perspectives of their biophysical behavior, their structure, the drugs and toxins with which they are known to interact, acquired and inherited diseases that affect sodium channels and the techniques with which their biophysical and structural properties are studied.
"Advances in Immunology, " a long-established and highly respected
publication, presents current developments as well as comprehensive
reviews in immunology. Articles address the wide range of topics
that comprise immunology, including molecular and cellular
activation mechanisms, phylogeny and molecular evolution, and
clinical modalities. Edited and authored by the foremost scientists
in the field, each volume provides up-to-date information and
directions for the future. Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field
This new volume of Current Topics in Developmental Biology
covers the area of Planar Cell Polaritywith contributions from an
international board of authors. The 12 chapters provide a
comprehensive set of reviews covering such topics as PCP in Zebra
fish, the role of Dishevelled in PCP regulation, and PCP in axon
pathfinding.
Cell biology spans among the widest diversity of methods in the biological sciences. From physical chemistry to microscopy, cells have given up with secrets only when the questions are asked in the right way This new volume of "Methods in Cell Biology" covers laboratory methods in cell biology, and includes methods that are among the most important and elucidating in the discipline, such as transfection, cell enrichment and magnetic batch separation. Covers the most important laboratory methods in cell biology
Chapters written by experts in their fields
The discovery and genetic engineering of fluorescent proteins has revolutionized cell biology. What was previously invisible in the cell often can be made visible with the use of fluorescent proteins. In Vivo Cellular Imaging Using Fluorescent Proteins: Methods and Protocols presents state-of-the-art research that has contributed to the fluorescent protein revolution to visualize biological processes in the live animal. This volume covers an array of topics from the employment of the chick CAM model using fluorescent proteins and other fluorescent probes, to intravital fluorescent imaging, as well as 3-dimensional imaging, and design instructions on how to create new and improved far-red and infrared fluorescent proteins, to name a few. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, In Vivo Cellular Imaging Using Fluorescent Proteins: Methods and Protocols is the first volume in the new field of in vivo cell biology and it serves both professionals and novices with its well-honed methodologies.
Cellular and Molecular Control of Neuronal Migration provides an up-to-date collection of reviews on the molecular and cellular principles of neuronal migration in the mammalian brain. Over the last decades a rich catalogue of signaling molecules controlling neuronal migration has been compiled, and within this book an international panel of experts provides up-to-date discussions of the state of knowledge how these distinct signaling pathways regulate various aspects of neuronal migration. This book introduces the reader to the latest discoveries and concepts of neuronal migration enabled through the application of most sophisticated methods and cutting edge experimental approaches. Cellular and Molecular Control of Neuronal Migration also provides an update on the underlying cellular and molecular basis of neurodevelopmental migration disorders in human patients for all interested neuroscientists and clinicians. |
You may like...
Encyclopedia of Cell Biology
Ralph A. Bradshaw, Philip D. Stahl, …
Hardcover
R60,861
Discovery Miles 608 610
In Situ Hybridization - Principles and…
Julia M. Polak, James O.D. McGee
Hardcover
R7,556
Discovery Miles 75 560
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,463
Discovery Miles 34 630
Signal Transduction in Cancer and…
Lorenzo Galluzzi, Thomas S. Postler
Hardcover
R5,782
Discovery Miles 57 820
Molecular Imaging - Principles and…
Brian D. Ross, Sanjiv S. Gambhir
Hardcover
R8,173
Discovery Miles 81 730
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,097
Discovery Miles 30 970
Mechanisms and Therapy of Liver Cancer…
Paul B. Fisher, Devanand Sarkar
Hardcover
R3,734
Discovery Miles 37 340
Biology of T Cells - Part A, Volume 341
Lorenzo Galluzzi, Nils-Petter Rudqvist
Hardcover
R5,128
Discovery Miles 51 280
|