![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
This second edition provides new and updated chapters describing the utility and attributes of different tools that are used for studying microbial systems. Chapters detail a number of methods, including in silico system level analyses by MetaFlux, Kbase genome-scale model builder, COBRA toolbox, NanoSIP, and PAMMS. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Microbial Systems Biology: Methods and Protocols, Second Edition aims to introduce and aid scientists in using the various tools that are currently available for analysis, modification, and utilization of microbial organisms.
This book presents a comprehensive view on mycotoxins of agricultural as well as non-agricultural environments and their health effects in humans and animals. Mycotoxins have immunosuppressive effects; but some of them can cause cancers, mutagenicity, neurotoxicity, liver and kidney damage, birth defects, DNA damage and respiratory disorders. The problem of mycotoxins is long-lasting and their direct or indirect exposures to humans and animals must be further discussed. The first chapter will cover the historical perspective of mycotoxins along with timeline while the second one will provide overview including classification of mycotoxins and mycotoxicoses. The comprehensive information/ literature on traditional, emerging and mushroom mycotoxins will be given in chapters 3, 4 and 5 respectively. Chapter 6 will deal with mycotoxins co-occurrence poisoning whereas new and masked mycotoxins will be described in chapter 7. The important aspects of mycotoxin studies like extraction, characterization and analysis and management strategies will be summarized in 8 and 9 chapters. The last chapter of the book will cover the recent developments in toxicokinetic studies of mycotoxins. The book will have the most up-to-date information and recent discoveries to deliver accurate data and to illustrate essential points to a wide range of readers including mycologists, clinicians, agricultural scientists, chemists, veterinarians, environmentalists and food scientists.
Covid-19: Biomedical Perspectives, Volume 50 in the Methods in Microbiology series highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Individual chapters in this new release include Sensitive methods for detection of SARS-CoV-2 RNA, Treatment of COVID-19 using Chinese herbal medicine, Understanding how SARS-CoV-2 is evolving and its impact on COVID-19 animal models and vaccine evaluation, Methods in machine learning to identify COVID-19 literature, COVID-19 seasonal behavior and the mutational landscape of the SARS-CoV-2 virus, CRISPR use in Diagnosis and Therapy for COVID-19, and much more.
This edited volume covers all aspects of the latest research in the field of soil formation and its functioning, soil diversity, soil proteomics, the impact of anthropogenic activities on the pedosphere, plant-microbe interactions in the pedosphere, and factors influencing the formation and functioning of the soils. In the pedosphere, all forms of soils possess a particular type of structure and different organic and mineral components. Thus, the pedosphere as a whole plays a significant role in providing unique habitats for a vast diversity of life forms, developing a link between geological and biological substances circulation in the terrestrial ecosystems. In the processes making available vital mineral elements to plants and supporting human health as various trace elements in the lithosphere are accessed by people through the formation of soils and such soils are utilized for food production. With the depth of information on different aspects of soil, this extensive volume is a valuable resource for the researchers in the area of soil science, agronomy, agriculture, scientists in academia, crop consultants, policymakers, government from diverse disciplines, and graduate and post-graduate students in the area of soil and environmental science.
This self contained book presents a comprehensive overview of the past, present and future of the galactose regulon of yeast, the classical model system of molecular biologists. The book starts with a brief historical overview on yeast research. This is followed by molecular genetics of the galactose regulon, isolation of genes and testing of the hypotheses. Contemporary topics including genomics, evolution, binary and graded responses, and stochasticity are all addressed.
The vast explosion of high-resolution molecular data in the past few years has provided an unprecedented glimpse into the microbial world. This book synthesises current viewpoints and knowledge on microbial ecological theory.
Agricultural Nanobiotechnology: Biogenic Nanoparticles, Nanofertilizers and Nanoscale Biocontrol Agents presents the most up-to-date advances in nanotechnology to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic and enhancement of the capacity of plants to absorb nutrients and resist environmental challenges. Highlighting the emerging nanofertilizers, nanopesticides and nanoherbicides that are being widely explored in order to overcome the limitations of conventional agricultural supplements, the book provides important insights to enable smart, knowledge-driven selection of nanoscale agricultural biomaterials, coupled with suitable delivery approaches and formulations will lead to promising agricultural innovation using nanotechnology. Agricultural Nanobiotechnology: Biogenic Nanoparticles, Nanofertilizers and Nanoscale Biocontrol Agents explores emerging innovations in nanobiotechnology for agriculture, food, and natural resources to address the challenges of food security, sustainability, susceptibility, human health, and healthy life. The book is ideal for the multidisciplinary scientists whose goal is to see the use of nanomaterials in agriculture to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and to generate increased yield through pest and nutrient management.
Soil is an important but often neglected element of the climate system. It is the second largest carbon store, or 'sink', after the oceans. Despite being a fundamental resource that supports all kinds of life on Earth, concerns related to soil are often not included as an important environmental issue. Climate changes put soil under pressure. The increasing concentration of carbon dioxide in our atmosphere may cause the microbes in the soil to work faster to break down organic matter, potentially releasing even more carbon dioxide. The soil moisture content is being constantly affected by rising temperatures and changes in precipitation patterns and future projections show that this may continue. This book presents current environmental issues and their remedies for soil which are mainly based on soil degradation, soil pollution and the effect of climate change on the soil. Adding xenobiotic chemicals or other alterations in the natural soil environment for agricultural, industrial or urban purposes result in a decline in the soil quality due to improper use or poor management, which is a serious environmental problem. The book is divided into five parts - soil science, soil physics, soil chemistry, soil biology and soil environment. The first part "Soil Science" serves as the introduction to the book and discusses some common topics such as soil formation, mineralogy, taxonomy, quality and analytical techniques. The second part "Soil Physics" is mainly concerned with the physical properties and processes of soil and their association with effects on air, water and temperature. Soil Chemistry, the third part, discusses the chemical reactions and processes between inorganic and organic components. The fourth part "Soil Biology" explains the biological properties and processes of the soil, with special concern to microbial diversity and its effect on the ecology. Lastly, the fifth part "Soil Environment" discusses the current environmental problems such as climate change and soil pollution, including processes to mitigate these issues through carbon sequestration, nutrient management and land management.
This contributed volume compiles the latest developments in the field of microbial enzymology. It focuses on topics such as distribution of microbial enzymes in natural habitats, microbial enzymes in environmental sustainability, and environmental disturbances on microbial enzymes, which are organized into three parts, respectively. Ranging from micro-scale studies to macro, it covers a huge domain of microbial enzymes and their interplay between the components of the environment. Overall, the book portrays the importance of microbial enzyme technology and its role in solving the problems in modern-day life. The book is a ready reference for practicing students and researchers in environmental engineering, chemical engineering, agricultural engineering, and other allied fields.
Clinical Microbiology, Volume 664 in the Methods in Enzymology series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including Synthesis of chemical probes to study bacterial adenylating enzymes, Fluoroquinolone-derived fluorescent probes for studies of bacterial penetration and efflux, Combining informatics with ABPP to identify serine hydrolyses in bacteria, A Ligand Selection Strategy Identifies Chemical Probes Targeting the Proteases of SARS-CoV-2, Activity-based probes for bacterial histidine kinases, Metabolomic approaches to enzyme function and pathway discovery, Identification of bile salt hydrolase activity in gut microbiota, and much more. Other chapters cover Multiplex fluorescence screening and identification using multiplex TMT, Customized Peptidoglycan Surfaces to Investigate Innate Immune Recognition via SPR, Site-Specific Siderocalin Binding to Ferric and Ferric-Free Enterobactin As Revealed by Mass Spectrometry, Proteomics of short-chain fatty acid probes in Salmonella, Development and application of highly sensitive labeling reagents for amino acids, and a variety of other timely topics.
This volume explores the latest techniques used to study Mycobacterium ulcerans, and more specifically M. ulcerans disease (Buruli ulcer). The chapters in this book are organized into three parts and cover methods for the detection of M. ulcerans and the analysis of host-pathogen interaction; the quantification and characterization of mycolactone, the macrolide toxin of M. ulcerans; and drug development against M. ulcerans. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Mycobacterium ulcerans: Methods and Protocols is a valuable resource that helps scientists advance their research on Buruli ulcer, which is still an under-researched field in infection biology.
Following an introduction to biogenic metal nanoparticles, this book presents how they can be biosynthesized using bacteria, fungi and yeast, as well as their potential applications in biomedicine. It is shown that the synthesis of nanoparticles using microbes is eco-friendly and results in reproducible metal nanoparticles of well-defined sizes, shapes and structures. This biotechnological approach based on the process of biomineralization exploits the effectiveness and flexibility of biological systems. Chapters include practical protocols for microbial synthesis of nanoparticles and microbial screening methods for isolating a specific nanoparticle producer as well as reviews on process optimization, industrial scale production, biomolecule-nanoparticle interactions, magnetosomes, silver nanoparticles and their numerous applications in medicine, and the application of gold nanoparticles in developing sensitive biosensors.
The methods included in Environmental Microbiology: Methods and Pro- cols can be placed in the categories "Communities and Biofilms," "Fermented Milks," "Recovery and Determination of Nucleic Acids," and the review s- tion, containing chapters on the endophytic bacterium, Bacillus mojavensis, the engineering of bacteria to enhance their ability to carry out bioremediation of aromatic compounds, using the hemoglobin gene from a strain of Vitreoscilla 23 spp., and the use of chemical shift reagents and Na NMR to study sodium gradients in microorganisms, all of which should be of interest to investigators in these fields. The subjects treated within the different categories also cover a wide range, with methods ranging from those for the study of marine organisms, through those for the investigation of microorganisms occurring in ground waters, including subsurface ground waters, to other types of environmental waters, to as varied subjects as the biodiversity of yeasts found in northwest Argentina. The range of topics described in the Fermented Milks section is smaller, but significant for investigators in areas concerned with milk as an item of foods for infants, small children, and even adults.
Biological remediation methods have been successfully used to treat polluted soils. While bacteria have produced good results in bioremediation for quite some time now, the use of fungi to decontaminate soils has only recently been established. This volume of Soil Biology discusses the potentials of filamentous fungi in bioremediation. Fungi suitable for degradation, as well as genetically modified organisms, their biochemistry, enzymology, and practical applications are described. Chapters include topics such as pesticide removal, fungal wood decay processes, remediation of soils contaminated with heavy and radioactive metals, of paper and cardboard industrial wastes, and of petroleum pollutants.
A Guide to the World of the Yeasts J. F. T. Spencer and D. M. Spencert As the well-known authority on yeasts, the late Professor Rose, frequently pointed out, it is impossible for one person to present, in a single volume, the details of the life, composiotion, habitats, relationships, and actual and potential uses to man kind of the 500 (at last count) known species of yeasts. This book confirms the truth of this statement. However, our aim is actually more modest than that, and this book is an attempt to introduce the general reader, and possibly some inter ested specialists, to the lives of the yeasts in their natural and more artificial habitats, their use by human beings, and to give some idea of the wonderfully complex activities within the yeast cell, the characteristics of the metabolism and molecular biology of yeasts, and the applications of these characteristics to life in the present-dayworld ofhuman existence. The book proceeds from a brief chapter on what is and is not known of the origins and early history of the yeasts, through a description of their classification, relationships, habitats and general life style, their external morphology and internal structures and mechanisms within their cells, the regulatory mechanisms controlling processes such as signal transmis sion, mating, cell fusion, and many others."
Rhizosphere Engineering is a guide to applying environmentally sound agronomic practices to improve crop yield while also protecting soil resources. Focusing on the potential and positive impacts of appropriate practices, the book includes the use of beneficial microbes, nanotechnology and metagenomics. Developing and applying techniques that not only enhance yield, but also restore the quality of soil and water using beneficial microbes such as Bacillus, Pseudomonas, vesicular-arbuscular mycorrhiza (VAM) fungi and others are covered, along with new information on utilizing nanotechnology, quorum sensing and other technologies to further advance the science. Designed to fill the gap between research and application, this book is written for advanced students, researchers and those seeking real-world insights for improving agricultural production.
This Springer Protocols manual is a practical guide to the application of key molecular biology techniques in microbiological research. The focus is on experimental protocols, which are presented in an easy-to-follow way, as step-by-step procedures for direct use in the laboratory. Notes on how to successfully apply the procedures are included, as well as recommendations regarding materials and suppliers. In addition to the practical protocols, important background information and representative results of experiments using the described methods are presented. Researchers in all areas applying microbial systems, such as in molecular biology, genetics, pathology, and agricultural research will find this work of great value.
The creation of plant-based foods is one of the most rapidly advancing areas in the modern food industry. Many consumers are adopting more plant-based foods in their diets because of concerns about global warming and its devastating impacts on the environment and biodiversity. In addition, consumers are adopting plant-based diets for ethical and health reasons. As a result, many food companies are developing plant-based analogs of animal-based foods like dairy, egg, meat, and seafood products. This is extremely challenging because of the complex structure and composition of these animal-based foods. Next-Generation Plant-based Foods: Design, Production and Properties presents the science and technology behind the design, production, and utilization of plant-based foods. Readers will find a review of ingredients, processing operations, nutrition, quality attributes, and specific plant-based food categories such as milk and dairy products, egg and egg products, meat and seafood products, providing the fundamental knowledge required to create the next generation of healthier and more sustainable plant-based food alternatives.
The book describes how plant biomass can be used as renewable feedstock for producing and further processing various products. Particular attention is given to microbial processes both for the digestion of biomass and the synthesis of platform chemicals, biofuels and secondary products. Topics covered include: new metabolic pathways of microbes living on green plants and in silage; using lignocellulosic hydrolysates for the production of polyhydroxyalkanoates; fungi such as Penicillium as host for the production of heterologous proteins and enzymes; bioconversion of sugar hydrolysates into lipids; production of succinic acid, lactones, lactic acid and organic lactates using different bacteria species; cellulose hydrolyzing bacteria in the production of biogas from plant biomass; and isoprenoid compounds in engineered microbes.
Biofilms -- Science and Technology covers the main topics of biofilm formation and activity, from basic science to applied aspects in engineering and medicine. The book presents a masterly discussion of microbial adhesion, the metabolism of microorganisms in biofilms, modelling of mass transfer and biological reaction within biofilms, as well as the behaviour of these microbial communities in industry (waste water treatment, heat exchanger biofouling, membranes, food processing) and in medicine (teeth, implants, prosthetic devices). Laboratory techniques and industrial monitoring methods are also presented. The book is directed at readers at the postgraduate level and is organised as a textbook, containing 11 chapters, a glossary, and a detailed subject index.
Proceedings of a Workshop, ICARDA, Syria, April 14-17, 1986.
The biennial TNF-family conferences have been held over the past 20 years, from the time that TNF was cloned. These meetings have followed the enormous progress in this field. Much is now known about the members of the TNF ligand and receptor families, their signaling proteins, mechanisms of action and cellular functions. This volume is the proceedings of the 12th TNF International Conference, held in April 2009. This conference focuses on the physiological, pathophysiological, and medical significance of these important regulators. Sessions at the meeting specifically address their involvement in immunity, development, apoptosis, autoimmunity, cancer, and infection, the normal function and pathology of the neuronal system, as well as major unresolved questions about their mechanisms of action.
Neurovirology, the study of viral infection of the ner vous system, has evolved at the interface of three of the most rapidly unfolding fields of investigation-neurobiology, vi rology, and immunology. In all three, increasing knowledge about the molecular structure of surface receptors, how in tracellular messages are transmitted, and how diversity is regulated genetically is provided, along with the techniques of molecular biology. This promises to give us knowledge not only about the process of infection and the complex host and viral determinants of neuroinvasiveness and neurovirulence, but eventually it will provide the background from which to engineer vaccines and to devise novel therapeutic agents. Animal virology and molecular biology developed quite independently from different origins. Animal virology was originally the province of the pathologists, and by clinical observation and histological preparations, they tried to ex plain the incubation period, the pathways of virus spread, and the mechanisms of disease. Molecular virology grew out of biochemistry, particularly through studies of bacterio phage, with emphasis on the physical and chemical structure of viruses and the sequences of biochemical events during the replicative cycle in cells." |
![]() ![]() You may like...
Open Source Systems - 17th IFIP WG 2.13…
Davide Taibi, Valentina Lenarduzzi, …
Hardcover
R1,521
Discovery Miles 15 210
Scientific Data Analysis using Jython…
Sergei V. Chekanov
Hardcover
Essential Java for Scientists and…
Brian Hahn, Katherine Malan
Paperback
R1,341
Discovery Miles 13 410
Programming for Computations…
Svein Linge, Hans Petter Langtangen
Hardcover
R2,079
Discovery Miles 20 790
|