![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
This text offers a holistic approach to the two topics of the highest interest in the current and future food industry: sustainability and nutrition. The current knowledge is narrow and specific to individual topics focusing on either one nutrient or one discipline. Food is part of a wide circle of disciplines: nutrition, technology, sensory, environmental aspects, psychology, economy, culture and society. In the recent years, the sales of innovative foods such as meatless burgers, allergen-free products and personalized nutrition have skyrocketed. Sustainable Food Innovation presents the big picture on each nutrient: industrial and natural sources (ingredients, food products), consumer acceptability (price, sensory quality) and nutritional properties (quantity and quality) with each chapter focusing on a specific essential nutrient. Further chapters illustrate the role of other elements of interest such as bioactive. In addition, experimental data is added to enrich the book. Online discussions on current food trends are analyzed and presented to the reader in the effort to understand consumers' psychology. This will be the first publication to combine literature review and research data and the first to offer a comprehensive discussion on sustainable food innovation. The ultimate goal is to educate consumers and experts, providing technical and socioeconomic knowledge in a multidisciplinary context. Ultimately, informed technologists will develop healthier, sustainable food products and informed consumers will make informed decisions on nutrition and food choices.
The book describes how plant biomass can be used as renewable feedstock for producing and further processing various products. Particular attention is given to microbial processes both for the digestion of biomass and the synthesis of platform chemicals, biofuels and secondary products. Topics covered include: new metabolic pathways of microbes living on green plants and in silage; using lignocellulosic hydrolysates for the production of polyhydroxyalkanoates; fungi such as Penicillium as host for the production of heterologous proteins and enzymes; bioconversion of sugar hydrolysates into lipids; production of succinic acid, lactones, lactic acid and organic lactates using different bacteria species; cellulose hydrolyzing bacteria in the production of biogas from plant biomass; and isoprenoid compounds in engineered microbes.
Agricultural Nanobiotechnology: Biogenic Nanoparticles, Nanofertilizers and Nanoscale Biocontrol Agents presents the most up-to-date advances in nanotechnology to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic and enhancement of the capacity of plants to absorb nutrients and resist environmental challenges. Highlighting the emerging nanofertilizers, nanopesticides and nanoherbicides that are being widely explored in order to overcome the limitations of conventional agricultural supplements, the book provides important insights to enable smart, knowledge-driven selection of nanoscale agricultural biomaterials, coupled with suitable delivery approaches and formulations will lead to promising agricultural innovation using nanotechnology. Agricultural Nanobiotechnology: Biogenic Nanoparticles, Nanofertilizers and Nanoscale Biocontrol Agents explores emerging innovations in nanobiotechnology for agriculture, food, and natural resources to address the challenges of food security, sustainability, susceptibility, human health, and healthy life. The book is ideal for the multidisciplinary scientists whose goal is to see the use of nanomaterials in agriculture to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and to generate increased yield through pest and nutrient management.
Methods in Microbiology serial highlights new advances in the field with this new volume presenting interesting chapters. Each chapter is written by an international board of authors.
This book covers intentional design aspects for combinations of drugs, single-molecule hybrids with potential or actual multiple actions, pro-drugs which could yield multiple activity outcomes, and future possibilities. The approach of the book is interdisciplinary, and it provides greater understanding of the complex interplay of factors involved in the medicinal chemistry design and laboratory development of multiply active antibacterials. The scope of the book appeals to readers who are researching in the field of antibacterials using the approach of medicinal chemistry design and drug development.
Biofilms -- Science and Technology covers the main topics of biofilm formation and activity, from basic science to applied aspects in engineering and medicine. The book presents a masterly discussion of microbial adhesion, the metabolism of microorganisms in biofilms, modelling of mass transfer and biological reaction within biofilms, as well as the behaviour of these microbial communities in industry (waste water treatment, heat exchanger biofouling, membranes, food processing) and in medicine (teeth, implants, prosthetic devices). Laboratory techniques and industrial monitoring methods are also presented. The book is directed at readers at the postgraduate level and is organised as a textbook, containing 11 chapters, a glossary, and a detailed subject index.
This second edition provides new and updated chapters describing the utility and attributes of different tools that are used for studying microbial systems. Chapters detail a number of methods, including in silico system level analyses by MetaFlux, Kbase genome-scale model builder, COBRA toolbox, NanoSIP, and PAMMS. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Microbial Systems Biology: Methods and Protocols, Second Edition aims to introduce and aid scientists in using the various tools that are currently available for analysis, modification, and utilization of microbial organisms.
This book covers recent advances and future trends in yeast synthetic biology, providing readers with an overview of computational and engineering tools, and giving insight on important applications. Yeasts are one of the most attractive microbial cell factories for the production of a wide range of valuable products, including pharmaceuticals, nutraceuticals, cosmetics, agrochemicals and biofuels. Synthetic biology tools have been developed to improve the metabolic engineering of yeasts in a faster and more reliable manner. Today, these tools are used to make synthetic pathways and rewiring metabolism even more efficient, producing products at high titer, rate, and yield. Split into two parts, the book opens with an introduction to rational metabolic pathway prediction and design using computational tools and their applications for yeast systems and synthetic biology. Then, it focuses on the construction and assembly of standardized biobricks for synthetic pathway engineering in yeasts, yeast cell engineering and whole cell yeast-based biosensors. The second part covers applications of synthetic biology to produce diverse and attractive products by some well-known yeasts. Given its interdisciplinary scope, the book offers a valuable asset for students, researchers and engineers working in biotechnology, applied microbiology, metabolic engineer ing and synthetic biology.
This book is about different Enzymes from various sources that play an important role in the degradation of an array of pollutants with simultaneous generation of value-added products. This is an "Edited Book" which deals a comprehensive knowledge on the role of different microorganisms/their enzymes in the degradation of pollutants, wastewater treatment with simultaneous production of value added products. It also deals the current state, perspectives and various challenges associated with the microbial/enzymatic degradation of environmental pollutants. This book will provide a profound knowledge on the importance of microorganisms/their enzymes in the degradation of pollutants like pesticides, antibiotics, toxic/hazardous chemicals, endocrine disrupting chemicals/compounds with production of value-added products like bioplastics for the sustainable development of society. It covers various existing wastewater treatment approaches using microorganisms alone and /or in combination of other methods with their merits, demerits and future prospects.
This book is first part of the 3 volume set focusing on basic and advanced methods for using microbiology as an entrepreneurial venture. This book deals with the concept of entrepreneurship skills for production, cost-benefit analysis and marketing of vaccines, diagnostic kits, biofuels, biogas, organic acids, plant nutrition enhancer, biofungicides, molecular products from Microbes-Taq polymerase, restriction enzymes and DNA ligase. Chapters cover the applications of microorganisms in small and large scale production to achieve a sustainable output. The book provides essential knowledge and working business protocols for Enzyme Industry, Pharmaceutical Industry, vaccine production etc. This book is helpful to graduate students, research scholars and postdoctoral fellows, and teachers who belong to different disciplines via botany, industrial microbiology, pharmaceutical and biotechnology, molecular biology. Other two volumes are focused on food and agriculture microbiology.
Natural phenolics are powerful bioactive compounds, but their use as antioxidant agents in lipid-based foodstuffs and cosmetics is limited due to their hydrophilic traits. A promising technique to overcome low solubility of phenolics is to increase their hydrophobicity by grafting with lipophilic moiety to form lipid-enriched phenolics (lipo-phenolics). Another way to enhance the amphiphilic traits of phenolics is by lipophilization with phospholipids in a suitable solvent to form phenolics-enriched phospholipids (pheno-phospholipids). Both functionalized phenolics (phenolipids) exhibit high bioavailability and antioxidative potential. Functional phenolics-enriched phospholipids (pheno-phospholipids) play an important role in enhancing the functional properties of both phenolic compounds and phospholipids in food for their use in nutrition and health. Phenolipids have also found applications on an industrial scale, likely due to low costs, the availability of starting material and safety. Recent advances in the field of lipophilization allow accessing molecules with high potency and targeted action covering a wide spectrum of bioactivities. Owing to their cost and availability, phenolipids find applications in niche sectors such as cosmetics and pharmaceutics as well as in the novel food. This book reports on the chemistry, preparation, and functionality of lipid-enriched phenolics (lipo-phenolics), broadening their applications in food, pharmaceuticals and cosmetics. The strategies of the lipophilization of phenolics, the effect of modification on the biological properties and potential applications of the resulting lipo-phenolics are reviewed. The text also discusses the preparation, physicochemical characteristics and functional properties of phenolipids and phytosomes, including the latest developments and their current industrial status.
The biennial TNF-family conferences have been held over the past 20 years, from the time that TNF was cloned. These meetings have followed the enormous progress in this field. Much is now known about the members of the TNF ligand and receptor families, their signaling proteins, mechanisms of action and cellular functions. This volume is the proceedings of the 12th TNF International Conference, held in April 2009. This conference focuses on the physiological, pathophysiological, and medical significance of these important regulators. Sessions at the meeting specifically address their involvement in immunity, development, apoptosis, autoimmunity, cancer, and infection, the normal function and pathology of the neuronal system, as well as major unresolved questions about their mechanisms of action.
Proceedings of a Workshop, ICARDA, Syria, April 14-17, 1986.
Neurovirology, the study of viral infection of the ner vous system, has evolved at the interface of three of the most rapidly unfolding fields of investigation-neurobiology, vi rology, and immunology. In all three, increasing knowledge about the molecular structure of surface receptors, how in tracellular messages are transmitted, and how diversity is regulated genetically is provided, along with the techniques of molecular biology. This promises to give us knowledge not only about the process of infection and the complex host and viral determinants of neuroinvasiveness and neurovirulence, but eventually it will provide the background from which to engineer vaccines and to devise novel therapeutic agents. Animal virology and molecular biology developed quite independently from different origins. Animal virology was originally the province of the pathologists, and by clinical observation and histological preparations, they tried to ex plain the incubation period, the pathways of virus spread, and the mechanisms of disease. Molecular virology grew out of biochemistry, particularly through studies of bacterio phage, with emphasis on the physical and chemical structure of viruses and the sequences of biochemical events during the replicative cycle in cells."
This book examines the commercial role of various microbial polysaccharides and recent advances in their production. Offering an overview of the physiological role, biosynthetic pathways and regulatory mechanisms, it also explores the current challenges regarding bioprocessing for the production of polysaccharides.
This edited volume covers all aspects of the latest research in the field of soil formation and its functioning, soil diversity, soil proteomics, the impact of anthropogenic activities on the pedosphere, plant-microbe interactions in the pedosphere, and factors influencing the formation and functioning of the soils. In the pedosphere, all forms of soils possess a particular type of structure and different organic and mineral components. Thus, the pedosphere as a whole plays a significant role in providing unique habitats for a vast diversity of life forms, developing a link between geological and biological substances circulation in the terrestrial ecosystems. In the processes making available vital mineral elements to plants and supporting human health as various trace elements in the lithosphere are accessed by people through the formation of soils and such soils are utilized for food production. With the depth of information on different aspects of soil, this extensive volume is a valuable resource for the researchers in the area of soil science, agronomy, agriculture, scientists in academia, crop consultants, policymakers, government from diverse disciplines, and graduate and post-graduate students in the area of soil and environmental science.
This book complies latest advancement in the field of environmental biotechnology. It focuses on topics that comprises industrial, environment and agricultural related issues to microbiological studies and exhibits correlation between biological world and dependence of humans on it. It is designed into three sections covering the role of environmental biotechnology in industry, environmental remediation, and agriculture. Ranging from micro-scale studies to macro, it covers up a huge domain of environmental biotechnology. Overall the book portrays the importance of modern biotechnology technologies in solving the problems in modern day life. The book is a ready reference for practicing students, researchers of biotechnology, environmental engineering, chemical engineering and other allied fields likewise.
Rhizosphere Engineering is a guide to applying environmentally sound agronomic practices to improve crop yield while also protecting soil resources. Focusing on the potential and positive impacts of appropriate practices, the book includes the use of beneficial microbes, nanotechnology and metagenomics. Developing and applying techniques that not only enhance yield, but also restore the quality of soil and water using beneficial microbes such as Bacillus, Pseudomonas, vesicular-arbuscular mycorrhiza (VAM) fungi and others are covered, along with new information on utilizing nanotechnology, quorum sensing and other technologies to further advance the science. Designed to fill the gap between research and application, this book is written for advanced students, researchers and those seeking real-world insights for improving agricultural production.
This detailed volume explores the field of bacterial virulence and the effort to understand how microbial interaction with a host results in the pathology of a specific disease. This collection of selected protocols includes advanced molecular biology and bioinformatics methods, cell culture and organoid models of infection, as well as in vivo infection models that are useful to study the interaction of pathogens with plants, insects, avian, and mammalian hosts. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and beneficial, Bacterial Virulence: Methods and Protocols serves as an ideal guide for researchers seeking to promote and further develop the exciting and continuously evolving field of bacterial virulence. Chapter 19 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book presents a comprehensive view on mycotoxins of agricultural as well as non-agricultural environments and their health effects in humans and animals. Mycotoxins have immunosuppressive effects; but some of them can cause cancers, mutagenicity, neurotoxicity, liver and kidney damage, birth defects, DNA damage and respiratory disorders. The problem of mycotoxins is long-lasting and their direct or indirect exposures to humans and animals must be further discussed. The first chapter will cover the historical perspective of mycotoxins along with timeline while the second one will provide overview including classification of mycotoxins and mycotoxicoses. The comprehensive information/ literature on traditional, emerging and mushroom mycotoxins will be given in chapters 3, 4 and 5 respectively. Chapter 6 will deal with mycotoxins co-occurrence poisoning whereas new and masked mycotoxins will be described in chapter 7. The important aspects of mycotoxin studies like extraction, characterization and analysis and management strategies will be summarized in 8 and 9 chapters. The last chapter of the book will cover the recent developments in toxicokinetic studies of mycotoxins. The book will have the most up-to-date information and recent discoveries to deliver accurate data and to illustrate essential points to a wide range of readers including mycologists, clinicians, agricultural scientists, chemists, veterinarians, environmentalists and food scientists.
The rapid urbanization and industrialization of developing countries across the globe have necessitated for substantial resource utilization and development in the areas of Healthcare, Environment, and Renewable energy. In this context ,this resourceful book serves as a definitive source of information for the recent developments in application of microbial enzymes in various sectors. It covers applications in fermentation processes and their products, extraction and utilisation of enzymes from various sources and their application in health and biomass conversion for production of value added products. Different chapters discuss various areas of bioprospecting in enzyme technology, and describe why these are the mainstays for industrial production of value added products. The rich compilation of the cutting-edge advances and applications of the modern industrial based techniques hold feasible solutions for a range of current issues in enzyme technology. This book will be of particular interest for scientists, academicians, technical resource persons, engineers and members of industry. Undergraduate and graduate students pursuing courses in the area of industrial biotechnology will find the information in the book valuable. General readers having interest towards biofuels, enzyme technology, fermented food and value added products, phytochemicals and phytopharmaceutical products will also find the book appealing. Readers will discover modern concepts of enzymatic bioprocess technology for production of therapeutics and industrial value added products.
Soil is an important but often neglected element of the climate system. It is the second largest carbon store, or 'sink', after the oceans. Despite being a fundamental resource that supports all kinds of life on Earth, concerns related to soil are often not included as an important environmental issue. Climate changes put soil under pressure. The increasing concentration of carbon dioxide in our atmosphere may cause the microbes in the soil to work faster to break down organic matter, potentially releasing even more carbon dioxide. The soil moisture content is being constantly affected by rising temperatures and changes in precipitation patterns and future projections show that this may continue. This book presents current environmental issues and their remedies for soil which are mainly based on soil degradation, soil pollution and the effect of climate change on the soil. Adding xenobiotic chemicals or other alterations in the natural soil environment for agricultural, industrial or urban purposes result in a decline in the soil quality due to improper use or poor management, which is a serious environmental problem. The book is divided into five parts - soil science, soil physics, soil chemistry, soil biology and soil environment. The first part "Soil Science" serves as the introduction to the book and discusses some common topics such as soil formation, mineralogy, taxonomy, quality and analytical techniques. The second part "Soil Physics" is mainly concerned with the physical properties and processes of soil and their association with effects on air, water and temperature. Soil Chemistry, the third part, discusses the chemical reactions and processes between inorganic and organic components. The fourth part "Soil Biology" explains the biological properties and processes of the soil, with special concern to microbial diversity and its effect on the ecology. Lastly, the fifth part "Soil Environment" discusses the current environmental problems such as climate change and soil pollution, including processes to mitigate these issues through carbon sequestration, nutrient management and land management.
This book is the second volume on this topic within the series. With unique properties, nanomaterials are rapidly finding novel applications in many fields such as food, medicine, agriculture and pollution. Such applications include to treat cancer, nanosensors to detect food contamination, nanomaterials for food packaging, nanoencapsulation to preserve nutraceuticals, and nanofertilisers for advanced agriculture. After an introductory chapter on property rights of nanomaterials, readers will discover the applications of nanotechnology in food, health, environment, ecotoxicology and agriculture. |
You may like...
Multimedia Data Mining and Analytics…
Aaron K Baughman, Jiang Gao, …
Hardcover
|