![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
Campylobacter jejuni (C. jejuni) is often regarded as the one of the most common causes of bacterial gastroenteritis worldwide. The goal of this volume is to highlight key protocols for working with C. jejuni. In particular, chapters aim to highlight recent developments with regards to in vivo models for C. jejuni pathogenesis, different approaches to isolate Campylobacter, and a systems biology approach for studying the effect of all potential Campylobacter gene mutants.Written in the highly successful Methods in Molecular Biologyseries format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Campylobacter jejuni: Methods and Protocols encourages existing Campylobacter researchers to employ novel methods to further their own research and also encourages new researchers to include Campylobacter in their future research initiatives.
"Advanced Techniques in Soil Microbiology" presents a wide range of biotechnological methods for application in soil microbiology analysis. These include all essential methods involving molecular biology, immunology, microbiology, and structural biology, such as transcriptome analysis, RNAi technology, molecular matchmaking, RAPD, T-RFLP and FT/MS. The techniques and procedures have been selected with the aim of offering practical guides for immediate use in the laboratory. The systems investigated range from individual molecules and cells to entire eukaryotic organisms, with a focus on bacteria, fungi, mycorrhiza, and higher plants. This volume of state-of-the-art, practice oriented methods will be of great use both to the first-timer and to the experienced scientist.
The objectives of this Second Edition of Biotechnology: A
Laboratory Course remain unchanged: to create a text that consists
of a series of laboratory exercises that integrate molecular
biology with protein biochemistry techniques while providing a
continuum of experiments. The course begins with basic techniques
and culminates in the utilization of previously acquired technical
experience and experimental material. Two organisms, "Sacchaomyces
cerevisiae" and "Escherichia coli," a single plasmid, and a single
enzyme are the experimental material, yet the procedures and
principles demonstrated are widely applicable to other systems.
This text will serve as an excellent aid in the establishment or
instruction of introductory courses in the biological sciences.
This book compiles the latest research in the area of Trichoderma Rhizosphere Biology. It covers topics such as microbial interaction, crosstalk between plants and microbes, interactions with abiotic and biotic factors, and advances in biocontrol agents, biofertilizers and biostimulants. The respective chapters describe innovative ways of adapting fungal communities to improve their survival in highly dynamic environments and agroecosystems. In closing, the book discusses the use of Trichoderma as a bio-growth enhancer and biostimulant for organic agriculture.
Endophytic prokaryotes can invade the tissue of the host plant without triggering defense reactions or disease symptoms. Instead, they promote the growth of the host plant due to their ability to fix atmospheric dinitrogen and/or to produce plant growth-promoting substances. This Microbiology Monographs volume presents up-to-date findings on the interactions between plants and beneficial prokaryotes, including the use of genomics for the analysis of plant-prokaryote symbioses and their evolution. Rhizobia-legume, actinorhizal and cyanobacterial symbioses are presented.
This book is focused on the current status of industrial pollution, its source, characteristics, and management through various advanced treatment technologies. The book covers the recycle, reuse and recovery of waste for the production of value-added products. The book explores industrial wastewater pollution and its treatment through various advanced technologies and also the source and characteristics of solid waste and its management for environmental safety. It discusses new methods and technologies to combat the waste-related pollution and focuses on the use of recycled products. This book is of value to upcoming students, researchers, scientists, industry persons and professionals in the field of environmental science and engineering, microbiology, biotechnology, toxicology, further it is useful for global and local authorities and policy makers responsible for the management of liquid and solid wastes.
Mycorrhiza will be the focus of research and study for the coming decade. Successful survival and maintenance of plant cover is mostly dependent on mycorrhization. During the last decade about ten books have appeared on various aspects of mycorrhiza, including two on methodology. The present book has been compiled to give a complete and comprehensive description of the topic to the students and researchers in botany, applied mycology, biotechnology, forestry and agriculture. The book will also be useful to planners dealing with biofertilizers and forestation. Besides topics of academic interest, the volume includes several aspects which are unique and are written about for the first time, e.g.: Arbuscular Mycorrhizal symbiosis - recognition and specificity; Mycorrhizal Integration and cellular compatibility between Endomycorrhizal symbionts; Cost - economics of existing methodology for inoculum production of vesicular-arbuscular mycorrhizal fungi; Mycorrhiza: Ecological Implications of Plant interactions; Outplanting performance of mycorrhizal inoculated seedlings; Fluorescence microscopy in mycorrhiza studies and Ectomycorrhizal fungi as experimental organism. Other aspects not mentioned above include most recent reviews concerning vesicular-arbuscular mycorrhiza and ectomycorrhizae. The different review chapters have been written by world authorities in their respective specialisations giving more up to date information than is provided anywhere else. This book deals with all major aspects of mycorrhiza, giving structure, ultrastructure, ecology and applications in agriculture and forestry.
The fascinating machinery that life uses to harness energy is the focus of this volume of the Advances in Photosynthesis and Respiration series. Experts in the field communicate their insights into the mechanisms that govern biological energy conversion from the atomic scale to the physiological integration within organisms. By leveraging the power of current structural techniques the authors reveal the inner workings of life.
This book highlights the latest research on waste processing technologies, particularly for domestic, agricultural, and petroleum based pollutants, intended to achieve waste valorisation. In addition, it discusses the important role of plastic recycling, as well as advanced waste processing techniques.
This volume gives an insight into what a group of contemporary plankton biologists think about the utility, virtues, strengths and theoretical and practical weaknesses of J.H. Connell's Intermediate Disturbance Hypothesis within the context of phytoplankton ecology. The sequence of papers in this volume moves from particular case studies to more general and finally theoretical approaches.
The aim of Plant Virology Protocols is to provide a source of infor- tion to guide the reader through the wide range of methods involved in gen- ating transgenic plants that are resistant to plant viruses. To this end, we have commissioned a wide-ranging list of chapters that will cover the methods required for: plant virus isolation; RNA extraction; cloning coat p- tein genes; introduction of the coat protein gene into the plant genome; and testing transgenic plants for resistance. The book then moves on to treatments of the mechanisms of resistance, the problems encountered with field testing, and key ethical issues surrounding transgenic technology. Although Plant Virology Protocols deals with the cloning and expression of the coat protein gene, the techniques described can be equally applied to other viral genes and nucleotide sequences, many of which have also been shown to afford protection when introduced into plants. The coat protein has, however, been the most widely applied, and as such has been selected to illustrate the techniques involved. Plant Virology Protocols has been divided into six major sections, c- taining 55 chapters in total.
Since penicillin and salvarsan were discovered, a number of new drugs to combat infectious diseases have been developed, but at the same time, the number of multi-resistant microorganism strains is increasing. Thus, the design of new and effective antibacterial, antiviral and antifungal agents will be a major challenge in the next years. This book reviews the current state-of-the-art in antimicrobial research and discusses new strategies for the design and discovery of novel therapies. Topics covered include the use of genetic engineering, genome mining, manipulation of gene clusters, X-ray and neutron scattering as well as the antimicrobial effects of essential oils, antimicrobial agents of plant origin, beta-lactam antibiotics, antimicrobial peptides, and cell-wall-affecting antifungal antibiotics.
The books in this acclaimed series are the most detailed, up-to-date accounts of the field available. Volume 3 explores the oncogenic potential shared by retroviruses of different species, the widespread presence of retrovirues in nature, and the role of retroviruses in normal development and pathogenesis.
This Volume presents a comprehensive series of generic protocols for the genetic and genomic analysis of prokaryotic isolates. Genetic methods for functional analyses employ the latest cloning vectors, gene fusion methods and transposon mutagenesis systems, as well as systems for introducing protease-cleavage sequences into permissive sites in proteins under investigation. Genomic methods described include protocols for transcriptomics, shotgun proteomics, interactomics, metabolic profiling, and lipidomics. Bioinformatic tools for genome annotation, transcriptome display and the integration of transcriptomic data into genome-scale metabolic reconstructions are described. Protocols for 13C-based metabolic flux determinations and analysis of the hierarchical and metabolic regulation of fluxes through pathways are included. The Volume thus enables investigators to functionally analyse an isolate over the entire cellular range spanning the gene, the genome, the transcript repertoire, the proteome, the interactome, the metabolic network with its nodes and their regulatory hierarchies, and the metabolic fluxes and their physiological controls. Hydrocarbon and Lipid Microbiology Protocols There are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
Microorganisms are capable of producing a wide variety of biopolymers. Homopolymer peptides, which are made up of only a single type of amino acid, are far less ubiquitous. The only two amino-acid homopolymers known to occur in nature are presented in this volume. Poly-epsilon-L-lysine is a polycationic peptide and exhibits antimicrobial activity against a wide spectrum of microorganisms. It is both safe and biodegradable and is therefore used as a food preservative in several countries. In addition, there has been great interest in medical and other applications of poly-lysine and its derivatives. In contrast, poly-gamma-glutamic acid is an unusual anionic polypeptide. It is also water soluble, biodegradable, edible, non-toxic and non-immunogenic and can be chemically modified to introduce various drugs. These features are very useful for pharmaceutical and biomedical applications. Poly-glutamic acid is also a highly attractive as a food ingredient.
Epigenetic modification of cellular genomes is a fascinating means of regulating tissue- and cell type-specific gene expression in all developmental stages of the life of an organism. Carefully orchestrated processes, such as DNA methylation and a plenitude of specific histone modifications secure the faithful transmission of gene expression patterns to progeny cells. Upon chronic infection, the epigenetic cellular balance can become disrupted and, in the long run, through the epigenetic reprogramming of host cell genomes, contribute to the malignant conversion of formerly healthy cells, in many cases preceded by the establishment of an epigenetic field of cancerization. The present volume undertakes to highlight the interactions of infectious pathogens and their effector molecules with the epigenetic regulatory machinery of the cell. Clearly, the recent take-off of epigenetics research did not leave Research on Infectious Diseases and Infection-Associated Cancer untouched. This resulted in a great many of clinically relevant data on understanding the molecular mechanisms of chronic infectious disease. Infectious pathogen- and disease-specific epigenetic alterations are already being used for the early detection of malignant disease and for the prediction of chemotherapy resistance or response to treatment.
1 2 MARCEL B. ROBERFROID AND GLENN R. GIBSON 1 Universite Catholique de Louvain, Department of Pharmaceutical Sciences, Avenue Mounier 73, B-1200 Brussels, BELGIUM 2 Food Microbial Sciences Unit, Department of Food Science and Technology, The University of Reading, Reading, UK It is clear that diet fulfils a number of important human requirements. These include the provision of sufficient nutrients to meet the requirements of essential metabolic pathways, as well as the sensory (and social) values associated with eating. It is also evident that diet may control and modulate various body functions in a manner that can reduce the risk of certain diseases. This very broad view of nutrition has led to the development of foodstuffs with added "functionality." Many different definitions of functional foods have arisen. Most of these complicate the simple issue that a functional food is merely a dietary ingredient(s) that can have positive properties above its normal nutritional value. Other terms used to describe such foods include vitafoods, nutraceuticals, pharmafoods, foods for specified health use, health foods, designer foods, etc. Despite some trepidation, the concept has recently attracted much interest through a vast number of articles in both the popular and scientific media.
This exciting book presents diverse applications of microalgal renewable resources to meet modern demands for energy and value-added products. It also comprehensively describes the role of algae in sustainable and cost-effective wastewater treatment strategies, and highlights the latest research on, advances in and biotechnological relevance of algae in the areas of bioenergy, bioremediation, pharmaceuticals, nutraceuticals and green economy. The book addresses gaps in the fields of bioenergy, waste management, health and economy by providing broad information on bioenergy production, management strategies, drug development, nutraceuticals products and biobased economy using algae at the commercial level. The book introduces researchers to key and emerging innovations in the field of algal biology research and will assist policymakers, environmentalists, scientists, students and global thinkers in defining sustainable developmental goals for the future. Accordingly, it is an extremely important read for researchers and students in the environmental sciences, life sciences and chemistry, experts in the energy sector and policymakers alike.
This volume provides state-of-the-art and novel methods on antibiotic isolation and purification, identification of antimicrobial killing mechanisms, and methods for the analysis and detection of microbial adaptation strategies. Antibiotics: Methods and Protocols guides readers through chapters on production and design, mode of action, and response and susceptibility. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Antibiotics: Methods and Protocols aims to inspire scientific work in the exciting field of antibiotic research.
The tropical plant family Pandanaceae comprises three genera, Freycinetia, Pandanus and Sararanga. One-hundred and fourteen genera and 226 species of fungi were found on dead leaves of Pandanaceae collected in Australia, Brunei Darussalam, Fiji, Hawaii, Hong Kong, Malaysia, Mauritius, Nepal, New Zealand, Niue, Philippines, Seychelles, Vanuatu and Vietnam. Taxonomic issues within each fungus genus are discussed and reference made to preceding work. All species are written up with bibliographic details, relevant measurements of the current specimens, known habitat and distribution, collection details, and a discussion on taxonomic conclusions. New taxa (4 genera, 35 species) are fully described and illustrated, each with a plate showing relevant macro- and microscopic details. Keys and/or synoptic tables are provided to all species in 28 genera. In addition, details on almost 700 species of fungi described and recorded worldwide from the Pandanaceae are listed.
Applied Microbiology and Molecular Biology in Oil Field Systems addresses the major problems microbes cause in oil fields, (e.g. biocorrosion and souring) and how beneficial microbial activities may be exploited (e.g. MEOR and biofuels). The book describes theoretical and practical approaches to specific Molecular Microbiological Methods (MMM), and is written by leading authorities in the field from both academia and industry. The book describes how MMM can be applied to faciliate better management of oil reservoirs and downstream processes. The book is innovative in that it utilises real industrial case studies which gives useful technical and scientific information to researchers, engineers and microbiologists working with oil, gas and petroleum systems. Content Level Professional/practitioner
The book summarizes the latest research and developments in dairy biotechnology and engineering. It provides a strategic approach for readers relating to fundamental research and practical work with lactic acid bacteria. The book covers every aspect from identification, ecology, taxonomy and industrial use. All contributors are experts who have substantial experience in the corresponding research field. The book is intended for researchers in the human, animal, and food sciences related to lactic acid bacteria. Dr. Heping Zhang is a Professor at the Key Laboratory of Dairy Biotechnology and Engineering Ministry of Education, Inner Mongolia Agricultural University, China. Dr. Yimin Cai works in Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Japan.
McCoy's guide to the maintenance and management of cooling water systems and the bacteria that live in them. Includes studies and testing of microbicides and other microorganisms that infest re-circulating cooling water systems and factors influencing their health and growth. Tests biological oxidation processes as a way of reusing treated effluents as an important method of water conservation in the petroleum refining and chemical processing industries. Explores practical methods for controlling microorganisms in cooling water; including working with chlorine dioxide as a microbicide. Methods are given for identifying and evaluating toxicants and bacteria that lead to fouling and staining of cooling water systems.
Functional foods and nutraceuticals are food products that naturally offer or have been modified to offer additional health benefits beyond basic nutrition. As such products have surged in popularity in recent years, it is crucial that researchers and manufacturers understand the concepts underpinning functional foods and the opportunity they represent to improve human health, reduce healthcare costs, and support economic development worldwide. Functional Foods and Nutraceuticals: Bioactive Components, Formulations and Innovations presents a guide to functional foods from experienced professionals in key institutions around the world. The text provides background information on the health benefits, bioavailability, and safety measurements of functional foods and nutraceuticals. Subsequent chapters detail the bioactive components in functional foods responsible for these health benefits, as well as the different formulations of these products and recent innovations spurred by consumer demands. Authors emphasize product development for increased marketability, taking into account safety issues associated with functional food adulteration and solutions to be found in GMP adherence. Various food preservation methods aimed at enhancing the quality and shelf life of functional food are also highlighted. Functional Foods and Nutraceuticals: Bioactive Components, Formulations and Innovations is the first of its kind, designed to be useful to students, teachers, nutritionists, food scientists, food technologists and public health regulators alike.
In response to low iron availability in the environment most microorganisms synthesize iron chelators, called siderophores. Bacteria and fungi produce a broad range of structurally diverse siderophores, which all show a very high affinity for ferric ions. "Microbial Siderophores" presents an up-to-date overview of the chemistry, biology and biotechnology of these iron chelators. Following an introduction to the structure, functions and regulation of fungal siderophores, several chapters focus on siderophores of pseudomonads. Here, the technique of siderotyping, which has proved to be a rapid, accurate and inexpensive tool for pseudomonad characterization and identification, is described. Further, the biological significance of siderophores of symbiotic fungi and the possible role of siderophores in pathogenesis are discussed. In addition to methodological approaches, chapters on the biotechnological production of siderophores and their application in promoting human and plant health are included. |
![]() ![]() You may like...
Agricultural Biotechnology - Genetic…
Vidya Venkataram, Kathleen Hefferon
Paperback
New and Future Developments in Microbial…
H. B Singh, Vijai G. Gupta, …
Hardcover
Unravelling Plant-Microbe Synergy
Dinesh Chandra, Pankaj Bhatt
Paperback
R3,647
Discovery Miles 36 470
Petroleum Industry Wastewater - Advanced…
Muftah H El-Naas, Aditi Banerjee
Paperback
R4,588
Discovery Miles 45 880
Microbial Pesticides - Biological…
Vladimir V. Gouli, Jose A. P. Marcelino, …
Paperback
R4,629
Discovery Miles 46 290
|