![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
This book presents research on the challenges and potential of fungal contribution in agriculture for food substantiality. Research on fungi plays an essential role in the improvement of biotechnologies which lead global sustainable food production. Use of fungal processes and products can bring increased sustainability through more efficient use of natural resources. Fungal inoculum, introduced into soil together with seed, can promote more robust plant growth through increasing plant uptake of nutrients and water, with plant robustness being of central importance in maintaining crop yields. Fungi are one of nature's best candidates for the discovery of food ingredients, new drugs and antimicrobials. As fungi and their related biomolecules are increasingly characterized, they have turned into a subject of expanding significance. The metabolic versatility makes fungi interesting objects for a range of economically important food biotechnology and related applications. The potential of fungi for a more sustainable world must be realized to address global challenges of climate change, higher demands on natural resources.
This Volume covers protocols for various applications in hydrocarbon microbiology, including those of interest for industrial processes, biocatalysis, lipid and biofuel production, bioproducts, or the human microbiome. It presents detailed protocols for the functional screening of enzymes acting on greasy molecules (i.e. lipases, esterases), including assays for enantioselective biocatalysts, as well as approaches for protein display technologies. Protocols for improving fuel quality and production of biofuel and lipids in different hosts (bacteria, algae, yeast) are also provided. The production of biogas from organic waste and its fermentation into value-added products such as polyhydroxyalkanoates is covered, as well as an in-vitro model of the gut microbiome for short-chain fatty acid metabolism and microbial diversity analyses. The applications presented are examples of the many potential applications in hydrocarbon and lipid microbiology, and many (i.e. protein-display technologies) will also be of interest in other research fields. Hydrocarbon and Lipid Microbiology Protocols There are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
This book describes how microbes can be used as effective and sustainable resources to meet the current challenge of finding suitable and economical solutions for biopharmaceuticals, enzymes, food additives, nutraceuticals, value added biochemicals and microbial fuels, and discusses various aspects of microbial regulatory activity and its applications. It particularly focuses on the design, layout and other relevant issues in industrial microbe applications. Moreover, it discusses the entire microbial-product supply chain, from manufacturing sites to end users, both in domestic and international markets, providing insights into the global marketing of microbes and microbial biomass-derived products. Further, it includes topics concerning the effective production and utilization of eco-friendly biotechnology industries. It offers a valuable, ready-to-use guide for technologists and policymakers developing new biotechnologies.
Metagenomics has proven to be a powerful tool for exploring the ecology, metabolic profiling, and comparison of complex microbial communities as well as its important applications in the mining of metagenomes for genes encoding novel biocatalysts and drug molecules for bioindustries. In Metagenomics: Methods and Protocols, expert researches provide an overview and introduction to basic methods commonly used in laboratories that have a strong background in microbial metagenomics. The book attempts to address all of the working steps involved in this crucial field, beginning with DNA isolation from soils and marine samples and continuing with the construction and screening of libraries, along with key advise involving bioinformatic tools available to analyze large metagenomic sequence data sets. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Metagenomics: Methods and Protocols serves as a very complete guide to available screening protocols for all major biocatalysts in order to allow for the easy setup of these screens in any microbiology lab.
The sustainability of both natural and managed ecosystems is strongly influenced by soil biological processes. A major question in soil biology and ecosystem ecology is the extent to which these processes are affected by the function and structure of the soil's biotic community. The Significance and Regulation of Soil Biodiversity presents the discussions of a group of soil biologists and ecosystem ecologists in which they synthesize available information, present innovative methodologies, and develop cross-taxa and cross-habitat collaborations to advance our understanding of soil biodiversity. The volume addresses the extent and regulation of soil biodiversity and describes initial approaches to the linking of soil biodiversity and ecosystem function. Audience: Researchers and students in a wide range of environmental scientific disciplines.
Insects multiply. Destruction reigns. There is dismay, followed by outcry, and demands to Authority. Authority remembers its experts or appoints some: they ought to know. The experts advise a Cure. The Cure can be almost anything: holy water from Mecca, a Government Commis sion, a culture of bacteria, poison, prayers denunciatory or tactful, a new god, a trap, a Pied Piper. The Cures have only one thing in common: with a little patience they always work. They have never been known entirely to fail. Likewise they have never been known to prevent the next outbreak. For the cycle of abundance and scarcity has a rhythm of its own, and the Cures are applied just when the plague of insects is going to abate through its own loss of momentum. -Abridged, with insects in place of voles, from C. Elton, 1924, Voles, Mice and Lemmings, with permission of Oxford University Press This book is an enquiry into the "natural rhythms" of insect abundance in forested ecosystems and into the forces that give rise to these rhythms. Forests form unique environ ments for such studies because one can find them growing under relatively natural (pri meval) conditions as well as under the domination of human actions. Also, the slow growth and turnover rates of forested ecosystems enable us to investigate insect popula tion dynamics in a plant environment that remains relatively constant or changes only slowly, this in contrast to agricultural systems, where change is often drastic and frequent."
Microbiology may be described as one of the younger sciences with its history, as a precise subject, only dating as far back as Pasteur in the mid 1800s and his revelation both of the role of microorganisms in nature and their importance to human welfare. Medical scientists rapidly took up the challenge, with their area of microbiology flourishing and expanding almost in complete isolation from the rest of biology. We now know, of course, that microorganisms have always played an important, if not essential role, in the biosphere with fermented foods and beverages, plant and animal diseases and nutrient cycling foremost in their sphere of activities. Within the last twenty years, microbiology has received two enormous boosts with the developments in microbial genetics and genetic engineering probably being the most influential, and the greater awareness of pollution and environmental sustainability following a close second. In 1990, your editor had the privilege and pleasure of being elected as President of The Association of Applied Biologists in the United King dom and, as the topic for his three-day Presidential Conference, chose 'The exploitation of microorganisms in applied biology'. This meeting stimu lated great interest in a wide range of subject areas, from weed control to nematology, from plant breeding to plant pathology, from mushrooms to mycorrhiza. The proceedings of this meeting were published in Aspects of Applied Biology, No. 24, 1990."
The main theme of this book is how reproduction in fungi is controlled by genetic and environmental factors. The genetics of fungi is at a crossroads - the methods of classical genetics are giving way to those of recombinant DNA technology. Reproduction in Fungi takes stock of what has been learned to date and points the way to future research.
In this timely book, expert international authors critically review all of the most important topics in this exciting field. This book is unique in that it is the first to review the area from a molecular biology and genomics perspective. Topics covered include: aerobic and anaerobic biodegradation of aromatic compounds; molecular detection methods (e.g. microautoradiography, mRNA analyses, etc.); genome-based predictive modeling; elucidation of regulatory networks; bioavailability; chemotaxis and transport issues; functional genomic analyses; natural attenuation; community fingerprinting and metagenomics; biotreatment; and biocatalysts engineering. The book will be essential reading for microbial degradation and bioremediation scientists, and of general interest for microbiologists working in field of environmental microbiology.
This book highlights the latest discoveries about the nitrogen cycle in the soil. It introduces the concept of nitrogen fixation and covers important aspects of nitrogen in soil and ecology such as its distribution and occurrence, soil microflora and fauna and their role in N-fixation. The importance of plant growth-promoting microbes for a sustainable agriculture, e.g. arbuscular mycorrhizae in N-fixation, is discussed as well as perspectives of metagenomics, microbe-plant signal transduction in N-ecology and related aspects. This book enables the reader to bridge the main gaps in knowledge and carefully presents perspectives on the ecology of biotransformations of nitrogen in soil.
This volume provides up-to-date and novel techniques for various screening technologies currently used in metagenomics and related areas. Starting with DNA/RNA isolation from environmental samples, the book continues by delving into areas such as current methods used to isolate DNA and construct metagenomic libraries, establishment of metagenome libraries in non-E. coli hosts, and topics like function-driven mining of metagenomic DNA, screening and analyzing protocols for a wide array of different genes encoding enzymes, bacterial viruses and much more. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Metagenomics: Methods and Protocols, Third Edition provides a comprehensive collection of up-to-date metagenome protocols and tools for the recovery of many major types of biocatalysts and allows for the easy setup of these screens in microbiology laboratories.
This text features the proceedings of a workshop on Advances in Biological Treatment of Lignocellulosic Materials, held in Lisbon, Portugal, during 25-27 October 1989.
This pioneering book focuses on Neotropical endophytic fungi, providing a comprehensive overview of their diversity, ecology, and biotechnological applications in medicine, agriculture, and industry. Despite their rich diversity, the endophytic fungi associated with plants of Central and South American biomes remain largely unknown. The book addresses that knowledge gap by offering insights into Neotropic endophytic fungal community.
These proceedings bring together diverse disciplines that study nitrogen fixation and describe the most recent advances made in various fields: chemists are now studying FeMoco, the active site of nitrogenase in non-protein surroundings, and have refined the crystal structure of the enzyme to 1.6 angstroms.
This book provides a comprehensive description of phosphate solubilizing microorganisms and highlights methods for the use of microphos in different crop production systems. The focus is on understanding both the basic and applied aspects of phosphate solubilizing microorganisms and how phosphorus-deficient soils can be transformed into phosphorus-rich ones by applying phosphate solubilizing microorganisms. The interaction of rhizosphere phosphate solubilizing microorganisms and environmental variables, as well as their importance in the production of crops such as legumes, cereals, vegetables etc. are discussed and considered. The use of cold-tolerant phosphate solubilizing microorganisms to enhance crop productivity in mountainous regions is examined, as are the ecological diversity and biotechnological implications of phosphate solubilizing microorganisms. Lastly, the role of phosphate solubilizing microorganisms in aerobic rice cultivation is highlighted. This volume offers a broad overview of plant disease management using phosphate solubilizing microbes and presents strategies for the management of cultivated crops. It will therefore be of special interest to both academics and professionals working in the fields of microbiology, soil microbiology, biotechnology and agronomy, as well as the plant protection sciences. This timely reference book provides an essential and comprehensive source of material, as it includes recent findings on phosphate solubilizing microorganisms and their role in crop production.
Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.
The refinement of molecular techniques and the development of new probes of the phylogeny of diazotrophs has revealed an extreme biodiversity among the nitrogen fixers, which helps explain the role that nitrogen fixation plays in maintaining life on Earth. The most efficient ecosystems are those where the bacteria are associated with a plant in differentiated organs to benefit crop productivity. Most short-term benefit from fundamental research on nitrogen fixation is likely to result in the improvement of existing nitrogen-fixing symbiotic or associative systems. Longer-term efforts are aimed at extending the nitrogen-fixing capacity to other organisms, including transfer of the genetic information for efficient nitrogen fixation into the plant genome and using current knowledge of microbe-plant interactions to extend symbiosis to cereals and, in particular, to rice. Related challenges in sustainable agriculture and forestry include the creation of new nitrogen-fixing associations. All of these approaches were discussed at the 11th International Congress on Nitrogen Fixation, Paris, France, July 20-25, 1997 and covered in the present proceedings volume.
Linear plasmids of microbes represent a heterogenous group of extrachromosomal genetic elements initially assumed to be rare and peculiar. However, we now know that they are fairly frequently occurring plasmids in bacterial and eukaryotic species. Viral strategies to avoid shortening of the linear molecules during replication imply a common ancestry. Linear plasmids may be beneficial, neutral or detrimental for the respective host; functions include production of protein toxins, specific catabolic capabilities, antibiotic resistance, pathogenicity factors, and senescence induction. Microbial Linear Plasmids constitutes the first attempt to comprehensively assemble current knowledge of different types of such elements, highlight recent developments in the field, and challenge the distinction between viruses and linear plasmids.
"This water" he told me, "runs out to the eastern region, and flows into the Arabah; and when it comes into the sea, into the sea of foul waters [i. e. , the Dead Sea], the water will become wholesome. Every living creature that swarms will be able to live wherever this stream goes; the fish will be very abundant once these waters have reached there. It will be wholesome, and everything will live wherever this stream goes. Fishermen shall stand beside it all the way from En-gedi to En-eglaim; it shall be a place for drying nets; and the fish will be of various kinds [and] most plentiful, like the fish of the Great Sea. " Ezekiel's prophecy (Ezekiel 47: 8-10) for revival and purification of the Dead Sea waters This new book on "Halophilic Microorganisms and their Environments" is the fifth volume in the COLE series (Cellular Origin and Life in Extreme Habitats (see: http://www. wkap. nl/prod/s/COLE). In the previous books we covered aspects of enigmatic microorganisms, microbial diversity, astrobiology, and symbiosis, so this book on halophilic microbes adds a fitting link to the rest of series' books. Since ancient times hypersaline habitats have been considered extreme environments, and some were thought not to sustain life at all. Yet, every organism requires salt for its existence. Salty places have been compared to an environment of extinction (e. g. , the Dead Sea).
Plant roots may not only be colonized by mycorrhizal fungi, but also by a myriad of bacterial and fungal root endophytes that are usually not considered by the investigators of classic symbioses. This is the first book dedicated to the interactions of non-mycorrhizal microbial endophytes with plant roots. The phenotypes of these interactions can be extremely plastic, depending on environmental factors, nutritional status, genetic disposition and developmental stages of the two partners. The book deals with diversity, life history strategies, interactions, applications in agriculture and forestry, methods for isolation, cultivation, and both conventional and molecular methods for identification and detection of these endophytes. The comprehensive reviews demonstrate the high diversity of interactions and will provoke further studies to better understand the mechanisms which determine whether a plant-microbial interaction remains asymptomatic, leads to disease or to a mutualistic interaction.
The new series "Microbiology Monographs" begins with two volumes on intracellular components in prokaryotes. In this second volume, "Complex Intracellular Structures in Prokaryotes," the components, labeled complex intracellular structures, encompass a multitude of important cellular functions. Continuing and newly initiated research will provide a clearer understanding of the complex intracellular structures known at present and will bring to light surprising new ones as well.
This book covers the wide set of well-regulated virulence factors and defense mechanisms of Pseudomonas aeruginosa focusing on stress responses and the evolution of this opportunistic human pathogen. Pseudomonas aeruginosa is responsible for one out of ten hospital infections. Additionally, this Gram-negative bacterium is accountable for persistent infections in immunocompromised individuals and the leading cause of chronic lung infections in cystic fibrosis patients. This book provides insight on the metabolic versatility of Pseudomonas aeruginosa and its mechanisms for biofilm formation that make this organism highly efficient in causing infections. The book invites the readers to learn more about the intrinsic ability of Pseudomonas aeruginosa to resist a wide variety of antimicrobial agents due to the concerted action of multidrug efflux pumps, antibiotic-degrading enzymes, and the low permeability of bacterial cellular envelopes. Particular focus is put on the evolutionary role of different types of protein-secretion systems in pathogenesis, flagella and their role in chemotaxis and surface sensing, and host-pathogen interactions. This book is a useful introduction to the field for junior scientists interested in the biology and pathogenesis of Pseudomonas aeruginosa. It is also an interesting read for advanced scientists and medical specialists working within this field, providing a broader view of the topic beyond their specific area of specialization.
In this book we present ten chapters describing the synthesis and application of nanomaterials for health, food, agriculture and bioremediation. Nanomaterials, with unique properties are now being used to improve food and agricultural production. Research on nanomaterials is indeed revealing new applications that were once thought to be imaginary. Specifically, applications lead to higher crop productivity with nanofertilisers, better packaging, longer food shelf life and better sensing of aromas and contaminants. these applications are needed in particular in poor countries where food is scarce and the water quality bad. Nanotechnology also addresses the age old issue of water polluted by industrial, urban and agricultural pollutants. For instance, research produces nanomaterials that clean water more efficiently than classical methods, thus yielding water for drinking and irrigation. However, some nanomaterials have been found to be toxic. Therefore, nanomaterials should be engineered to be safe for the environment.
Applies an inductive experimental approach to recognize, control, and resolve the variables that effect the wine-making process and the qual ity of the final product{focusing on the grape variety-yeast interacti on controversy. Contains over 300 original drawings, photographs, and photomicrographs-unavailable in any other source-that illustrate the d iagnostic morphology of wine yeast and bacteria used to track wine spo ilage and related problems. Promotes a better understanding of the bio technological phenomena in the wine-making process in which yeast enzy mology plays a key role with plant physiology. |
![]() ![]() You may like...
Laboratory Manual of General…
Selman A. 1888-1973 Waksman, Edwin Broun Fred
Hardcover
R877
Discovery Miles 8 770
Fisheries and Aquaculture Economics
D. A. Upadhyay, Ajit Kumar Roy, …
Hardcover
R4,724
Discovery Miles 47 240
Yeasts in the Production of Wine
Patrizia Romano, Maurizio Ciani, …
Hardcover
R7,156
Discovery Miles 71 560
Bacteriology - A Manual For Students And…
Frederick Carl Zapffe
Hardcover
R991
Discovery Miles 9 910
Advances in Microbial Physiology, Volume…
Robert K. Poole, David J. Kelly
Hardcover
R5,081
Discovery Miles 50 810
Pheno-phospholipids and Lipo-phenolics…
Mohamed Fawzy Ramadan
Hardcover
R3,020
Discovery Miles 30 200
|