![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
In recent decades, significant advances in new methodologies like DNA sequencing and high-throughput sequencing have been used to identify microorganisms and monitor their interactions with different environments. Microbial genomics techniques are opening new approaches to microbiology by revealing how microorganisms affect human beings and the environment. This book covers four major areas: 1) Environmental microbial genomics, 2) Microbial genomics in human health, 3) Microbial genomics in crop improvement and plant health protection, and 4) Genome analysis of microbial pathogens. Within these areas, the topics addressed include: microbial genome diversity, evolution, and microbial genome sequencing; bioinformatics and microarray-based genomic technologies; functional genomics of bioremediation of soil and water from organic and inorganic pollutants and carbon management; functional genomics of microbial pathogens and relevant microorganisms; functional genomics of model microorganisms; and applied functional genomics. Given its scope, the book offers a comprehensive source of information on the latest applications of microorganisms and microbial genomics to enhance the sustainability of agriculture and the environment.
This volume includes chapters by experts around the world on
many aspects of microtubule imaging in living and fixed cells;
assays to study microtubule function in a wide array of model
organisms and cultured cells; high resolution approaches to study
of the cytoskeleton. The authors share their years of experience,
outlining potential pitfalls and critical factors to consider in
experimental design, experimental implementation and data
interpretation. Iincludes chapters by experts around the world on many aspects of microtubule imaging in living and fixed cells; assays to study microtubule function in a wide array of model organisms and cultured cells; high resolution approaches to study of the cytoskeleton. The authors share their years of experience, outlining potential pitfalls and critical factors to consider in experimental design, experimental implementation and data interpretation.
This book focuses on the different kinds of biofuels and biofuel resources. Biofuels represent a major type of renewable energy. As part of a larger bio-economy, they are closely linked to agriculture, forestry and manufacturing. Biofuels have the potential to improve regional energy access, reduce dependence on fossil fuels and contribute to climate protection. Further, this alternative form of energy could revitalize the forestry and agricultural sector and promote the increased use of renewable resources as raw materials in a range of industrial processes. Efforts are continuously being made to develop economically competitive biofuels, and microbes play important roles in the production of biofuels from various bioresources. This book elaborates on recent advances in existing microbial technologies and on sustainable approaches to improving biofuel production processes. Additionally, it examines trends in, and the limitations of, existing processes and technologies. The book offers a comprehensive overview of microbial bioresources, microbial technologies, advances in bioconversion and biorefineries, as well as microbial and metabolic engineering for efficient biofuel production. Readers will also learn about the environmental impacts and the influence of climate change on the sustainability of biofuel production. This book is intended for researchers and students whose work involves biorefinery technologies, microbiology, biotechnology, agriculture, environmental biology and related fields.
Due to their novel concepts and extraordinary high-throughput sequencing capacity, the "next generation sequencing" methods allow scientists to grasp system-wide landscapes of the complex molecular events taking place in various biological systems, including microorganisms and microbial communities. These methods are now being recognized as essential tools for a more comprehensive and deeper understanding of the mechanisms underlying many biological processes. In High-Throughput Next Generation Sequencing: Methods and Applications, experts in the field explore the most recent advances in the applications of next generation sequencing technologies with an emphasis on microorganisms and their communities; however, the methods described in this book will also offer general applications relevant to the study of any living organisms. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, High-Throughput Next Generation Sequencing: Methods and Applications is an excellent collection of chapters to aid all scientists who wish to apply these innovative research tools to enhance their own pursuits in microbiology and also biology in general.
This book primarily covers the general description of foodborne pathogens and their mechanisms of pathogenesis, control and prevention, and detection strategies, with easy-to-comprehend illustrations. The book is an essential resource for food microbiology graduate or undergraduate students, microbiology professionals, and academicians involved in food microbiology, food safety, and food defense-related research or teaching. This new edition covers the significant progress that has been made since 2008 in understanding the pathogenic mechanism of some common foodborne pathogens, and the host-pathogen interaction. Foodborne and food-associated zoonotic pathogens, responsible for high rates of mortality and morbidity, are discussed in detail. Chapters on foodborne viruses, parasites, molds and mycotoxins, and fish and shellfish are expanded. Additionally, chapters on opportunistic and emerging foodborne pathogens including Nipah virus, Ebola virus, Aeromonas hydrophila, Brucella abortus, Clostridium difficile, Cronobacter sakazakii, and Plesiomonas shigelloides have been added. The second edition contains more line drawings, color photographs, and hand-drawn illustrations.
This third book in the Trilogy of Traditional Foods, part of the ISEKI Food Series, covers the beneficial properties of functional foods from across the world. The volume is divided into four sections that address different key topics in the area of study. Part I provides a general overview of the material, with chapters on functional aspects of antioxidants and probiotics in traditional food. This section also includes chapters on the potential health benefits of Thai, Slovak and Turkish traditional foods. Part II contains eight chapters on cereal-based foods, including chapters on Carob flour, products from Mexican Chia, and the ancient grain Canahua. Part III is devoted to plant based foods and includes chapters on dates from Israel, medical properties of cactus products from Mexico, beneficial properties of Mastic gum from the Greek island Chios, and the properties of Argan oil from Morocco. Part IV focuses on Honey and Beverages, with chapters on functional and nutritional properties of honey and the properties of Camellia tea, as well as the Spanish drink Horchata De Chufa. The purpose of the book is to describe and sometimes evaluate properties of foods that native consumers have believed to be beneficial. All chaptersare written by practicing Food Scientists or Engineers but are written with the interested general public in mind.The book should cater to the practicing food professional as well as all who are interested in beneficial properties of traditional foods.
MILS-14 provides a most up-to-date view of the exciting biogeochemistry of gases in our environment as driven mostly by microorganisms. These employ a machinery of sophisticated metalloenzymes, where especially transition metals (such as Fe, Ni, Cu, Mo, W) play a fundamental role, that is, in the activation, transformation and syntheses of gases like dihydrogen, methane, carbon monoxide, acetylene and those of the biological nitrogen and sulfur cycles. The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment is a vibrant research area based mainly on structural and microbial biology, inorganic biological chemistry and environmental biochemistry. All this is covered in an authoritative manner in 11 stimulating chapters, written by 26 internationally recognized experts and supported by nearly 1200 references, informative tables and about 100 illustrations (two thirds in color). MILS-14 also provides excellent information for teaching. Peter M. H. Kroneck is a bioinorganic chemist who is exploring the role of transition metals in biology, with a focus on functional and structural aspects of microbial iron, copper and molybdenum enzymes and their impact on the biogeochemical cycles of nitrogen and sulfur. Martha E. Sosa Torres is an inorganic chemist, with special interests in magnetic properties of newly synthesized transition metal complexes and their reactivity towards molecular oxygen, applying kinetic, electrochemical and spectroscopic techniques.
Published since 1959, "Advances in Applied Microbiology" continues
to be one of the most widely read and authoritative review sources
in microbiology.
Biosurfactants, tensio-active compounds produced by living cells, are now gaining increasing interest due to their potential applications in many different industrial areas in which to date almost exclusively synthetic surfactants have been used. Their unique structures and characteristics are just starting to be appreciated. In addition, biosurfactants are considered to be environmentally "friendly," relatively non-toxic and biodegradable. This Microbiology Monographs volume deals with the most recent advances in the field of microbial biosurfactants, such as rhamnolipids, serrawettins, trehalolipids, mannosylerythritol lipids, sophorolipids, surfactin and other lipopeptides. Each chapter reviews the characteristics of an individual biosurfactant including the physicochemical properties, the chemical structures, the role in the physiology of the producing microbes, the biosynthetic pathways, the genetic regulation, and the potential biotechnological applications.
This book evolved from the editors strong belief that the information and new developments that were evolving from the rapidly growing field of genomics and that are happening primarily in the developed world have not happened at a parallel rate in the developing world. One would have hoped that by now the technologies and approaches would have been adapted on a far greater scale. In addition to this, the associated information is not always easily accessible, and is not disseminated in a format that can become a useful reference for scientists, students and others who reside in developing countries.
Plants form mutualistic association with various microorganisms, particularly in the rhizosphere region. The association benefits both the partners in a number of ways. A single plant can support the growth of diverse microbes and in reciprocation these microbes help the plant in several ways. A great deal of knowledge is now available on the mechanisms of action of plant growth promoting microbes in forming association with their partner plant and benefitting it. With ever increasing population and to achieve food security it has become utmost necessary to utilize these friendly microbes to enhance the crop yield and quality in an ecofriendly and sustainable manner. We already know about the huge negative impact of chemicals used in agriculture on the humans and the ecosystems as whole. 'Plant Microbes Symbiosis - Applied Facets' provides a comprehensive knowledge on practical, functional and purposeful utility of plant-microbe interactions. The book reviews the utilization of beneficial microbes for crop yield enhancement and protection against diseases caused by phytopathogens and nutrient deficiencies. The tome also reviews the utility of plant growth promoting microbes in helping the plants to deal with abiotic stresses imposed by climate change and anthropogenic activities. The book showcases how plant-microbe interactions are or can be utilized for reclamation of stressed soils and degradation of pollutants in a most effective and environment friendly manner. It also ascertains the reasons for the below par performance of the microbial based inoculants. The utilization of biotechnological tools for development of next generation bioformulations to combat the new challenges and overcome past hurdles has been discussed. This wonderful association between plants and microbes if used properly will not only enhance the crop yields and reclaim barren lands but also make our planet a better place to live on for all of its habitants.
This book gives basic facts about litter decomposition studies, which are of guidance for scientists who start studies. Since the publication of the third edition, there has been quite a development not only in the field of litter decomposition but also in supporting branches of science, which are important for fruitful work on and understanding of decomposition of plant litter and sequestration of carbon. A consequence is that 'old established truths' are becoming outdated. New knowledge in the fields of phytochemistry and microbial ecology has given a new baseline for discussing the concepts 'litter decomposition' and 'carbon sequestration'. We can also see a rich literature on litter decomposition studies using roots and wood as substrates. These have given new insights in factors that regulate the decomposition rate and as regards roots their contribution to sequestered carbon in humus. Additional facts on the role of temperature vs the litters' chemical composition may in part change our view on effects of climate change. Further information on applications of the new analytical technique (13C-NMR) for determining organic-chemical compounds has allowed us to develop these parts. Focus is laid on needle litter of Scots pine as a model substrate as this species has been considerably more studied than other litter species. Also the boreal/northern temperate coniferous forest has in part been given this role. Still, new information may allow us to develop information about litter from further tree species.
Microbial Phenazines: Biosynthesis, Agriculture and Health focuses on phenazines, a group of upwards of a hundred nitrogen-containing redox-active heterocyclic compounds of bacterial origin that have long attracted scientific interest because of their colorful pigmentation. Our understanding of these fascinating natural products and their role in human health and the environment has advanced rapidly in recent years, but we are only now beginning to be able to exploit the potential of these compounds in such fields as agriculture and medicine. This volume includes information on the biochemistry and genetics of phenazine synthesis, the physiological effects of phenazines, and methods for the isolation and identification of phenazines with the aid of spectroscopic and electrophoretic techniques. Also included are chapters focused on the roots of phenazine research in the biological control of plant pathogens and recent knowledge of the diversity of phenazine-producing microorganisms and the environments in which they occur. A final chapter addresses the potential of phenazines in the treatment of cancer.
Cilia are highly conserved organelles that serve motile
functions, sensory functions, or both. These organelles power cell
movement, generate fluid flow in various organs, act as sensors of
the extracellular environment and have been modified for various
specialized tasks such as light reception and smell. Defects in
these ubiquitous organelles lead to a broad array of human genetic
disorders that range from polycystic kidney disease, retinal
degeneration, epilepsy and infertility to developmental defects
such as situs inversus and polydactyly. This volume is the third in
a three-part series on cilia that focuses on the use of model
organisms to gain insight into ciliary function and on the process
of intraflagellar transport that is essential for the assembly and
maintenance of ciliary structures. * Includes both classic and state-of-the-art methods readily adaptable across model systems, and designed to last the test of time * Covers forward and reverse genetic analysis of IFT and biochemical methods to define the role of IFT components * Methods presented cover molecular, genetic, and biochemical approaches to ciliary function in model organisms"
Understanding the origin of fecal pollution is essential in assessing potential health risks as well as for determining the actions necessary to remediate the quality of waters contaminated by fecal matter. As a result, microbial source tracking (MST) has emerged as a field that has evolved and diversified rapidly since the first approaches were described only a decade ago. In response to the emergence of MST, there have been three large multi-laboratory method comparison studies (two in the US and one in Europe), plus numerous workshops, book chapters, and review articles dedicated to synthesizing information on the topic. Furthermore, a federal (USEPA) guide document describing the uses and limitations of MST methods was published in 2005, and a book dedicated to MST as an emerging issue in food safety was published in 2007. These documents provide a collective body of literature on MST that is both conflicting and complementary, often repetitious, and difficult to condense and interpret. In addition, it does not reflect the current diversity of MST approaches with different organisms, newer methodologies such as quantitative PCR, and anthropogenic chemicals, nor does it embrace the scope of MST research being conducted around the world. The three editors of the book, all with extensive MST expertise, have developed chapters and invited authors who reflect the rich diversity and truly international scope of MST. The unifying theme throughout the book is the design of more standardized approaches to MST that include performance criteria (regardless of method or organism), plus recommendations for field study design and MST implementation. The editors intend that this book will serve as a valuable reference for all those who are involved with
This thesis describes an in-depth study of an indolizine-based fluorophore, from understanding of its structure-photophysical property relationship to its application as a useful biological reporter. Organic fluorophores have been extensively used in the field of molecular biology owing to their excellent photophysical property, suitable cell permeability, and synthetic flexibility. Understanding of the structure-photophysical property relationship of a given fluorophore often paves the road to the development of valuable molecular probes to visualize and transcribe biological networks. In this thesis, respective chapters deal with molecular design, organic synthesis, structure-property analysis, and quantum-mechanical interpretation of unexplored family of indolizine-based molecules. This systematic exploration has led to rational development of a new microalgae lipid droplet probe, colorful bioorthogonal fluorogenic probes, and a bright mitochondrial probe, working under live cell conditions. Harnessing the optical properties of a given fluorophore has been an important topic for a couple of decades, both in industry and in academia. This thesis provides useful insights for the improvement and development of unique small fluorescent materials, or optical materials.
Symbiotic Fungi Principles and Practice presents current protocols for the study of symbiotic fungi and their interactions with plant roots, such as techniques for analyzing nutrient transfer, ecological restoration, microbial communication, and mycorrhizal bioassays, AM inoculum procedures and mushroom technology. The protocols offer practical solutions for researchers and students involved in the study of symbiotic microorganisms. The volume will be of great use for basic research, biotechnological applications, and the development of commercial products."
Published since 1959, "Advances in Applied Microbiology" continues
to be one of the most widely read and authoritative review sources
in microbiology.
The book will address selected topics in postharvest pathology aiming at highlighting recent development in the science, technology and control strategies of postharvest diseases to reduce losses and enhance safety of harvested agricultural products. Topics will include: 1) Introduction: Perspectives and challenges in postharvest pathology 2) Elucidating host-pathogen interactions 3) Next generation technologies for management and detection of postharvest pathogens 4) Food safety in postharvest pathology 5) Alternative postharvest diseases control strategies 6) Chemical control of postharvest diseases
Novel Food Fermentation Technologies provides a comprehensive overview of innovations in food fermentation technologies and their application. Current novel technologies for microbial culture production and preservation are covered in detail, as are fermentation techniques for the production of bioactives from various food matrices, including food processing by-products and waste. Readers are provided with a close look at thermal and non-thermal technologies applicable to fermented food products. The text covers immobilization, microencapsulation technologies and novel preservation techniques for cultures in fermentation. In-depth studies of high pressure processing, pulsed electric field, power ultrasound and gamma irradiation in fermentation are provided in addition to novel thermal and non-thermal technologies and process analytical techniques. A wide variety of fermented products are covered, including meat, marine-based, grain-based, dairy and vegetable-based products. Current technologies for extraction of bioactives are examined, as are current innovations in fermented food packaging. Readers are presented with current and future challenges in food fermentation as well. As a comprehensive reference for food fermentation, this work provides up-to-date insights into emerging fermentation technologies which facilitate the processing of wholesome and safe food products.
This book is the result of 14 years of collecting Entolomataceae in the native forests of Tasmania, Australia. Although initially involving only the Tasmanian residents Genevieve Gates and David Ratkowsky, who made twice- or thrice-weekly forays into the forests throughout the year, the project was subsequently joined by agaric specialist Machiel Noordeloos from the Netherlands, and by fungi photographer Michael Pilkington from the United Kingdom. The international character of the project is further evidenced by the earlier contributions of American mycologist Tim Baroni to the Tasmanian Rhodocybe species which form the basis of the chapter on the now-expanded concept of Clitopilus, and a visit of several months in 2010 by Brazilian Ph.D. candidate Fernanda Karstedt, who tested the keys to the Entoloma species. Consequently, several thousand well-annotated collections were found during this inventory and form the basis of this monographic treatment of the Entoloma and Clitopilus of Tasmania. The resulting 90 Entoloma species and 10 Clitopilus species are well documented with standardized descriptions, line drawings of fruit bodies and diagnostic microscopic characters, and, when available, with colour photographs. Thanks to the intensive search, it was possible to illustrate most species in colour. Dichotomous keys facilitate identification of the species. The species concept used is morphologically based; in several cases, however, identification to species level is supported by molecular data.
Metabolic engineering is the practice of genetically optimizing metabolic and regulatory networks within cells to increase production and/or recovery of certain substance from cells. In Microbial Metabolic Engineering: Methods and Protocols expert researchers in the field detail many of the methods which are now commonly used to study metabolic engineering. These include methods and techniques to engineer genes and pathways, use of modern biotechnology tools in microbial metabolic engineering, and examples of metabolic engineering for real world applications such as whole cell biosensors and acetate control in large scale fermentation. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microbial Metabolic Engineering: Methods and Protocols seeks to provide researchers with an overview of key topics on microbial metabolic engineering.
This book is devoted to nanomicrobiology and the nanosystems of bacteria. The initial chapter discusses some of the controversies in the geochemical and biomedical fields associated with the reports of nanobacteria in the environment. Current knowledge of several internal and surface structures of bacteria is addressed in this book. Included are chapters discussing carboxysomes, S-layers, gliding motility of bacteria, and aggregation of iron to produce nano-magnetite. Information about the activities of outer membrane vesicles produced by Gram-negative bacteria is discussed as a benefit to bacteria that produce it and some potential industrial applications are presented. A broad review of bacterial-mineral interactions is addressed in a chapter of metallic nanoparticles and colloids production by bacterial reduction of soluble redox active elements. The structures of bacterial nanowires are discussed and their application in extra-cellular electron transport is reviewed. Nanomotor activities of bacteria are discussed as pertains to the mechanics of flagellar rotation, production of energy by ATP synthase, DNA packing, and translocation of proteins across membranes by secretion systems. The rapidly evolving field of nanosystem technology is embracing many areas, and it is the hope that this book will stimulate the use of bacterial nanostructures for future developments in nanotechnology.
Foodborne illnesses caused by various bacterial, viral, and fungal pathogens lead to a high number of morbidity and mortality in the U.S. and throughout the world. Recent advances in microbial genomics have significantly improved our understanding of the physiology, evolution, ecology, epidemiology, and pathogenesis of different foodborne pathogens. This book focuses on the genomics of foodborne bacterial pathogens. It begins with a brief overview of the recent advances in microbial genomics and the impact of genomics on food safety research. Then, eight chapters follow that elaborate some in-depth reviews on the genomics of several common foodborne bacterial pathogens including Bacillus, Campylobacter, Clostridium, Escherichia coli, Listeria, Salmonella, Staphylococcus, and Vibrio. Finally, the last four chapters focus on some current genomic, transcriptomic, and proteomic technologies and their applications in studying the epidemiology, evolution, and pathogenesis of foodborne bacterial pathogens. Genomics of Foodborne Bacterial Pathogens can be used as a reference by scientists and professionals in academia, government, and industry who are interested in understanding microbial genomics and using genomics tools to study foodborne bacterial pathogens. This book can also be used as a textbook for instructors and professors who teach food microbiology or microbial genomics-related courses at the post-graduate level.
"Advances in Microbial Physiology" is one of the most successful
and prestigious series from Academic Press, an imprint of Elsevier.
It publishes topical and important reviews, interpreting physiology
to include all material that contributes to our understanding of
how microorganisms and their component parts work. |
![]() ![]() You may like...
Agricultural Biotechnology - Genetic…
Vidya Venkataram, Kathleen Hefferon
Paperback
Laboratory Methods in Food Microbiology
Wilkie F. Harrigan
Paperback
New and Future Developments in Microbial…
H. B Singh, Vijai G. Gupta, …
Hardcover
Unravelling Plant-Microbe Synergy
Dinesh Chandra, Pankaj Bhatt
Paperback
R3,647
Discovery Miles 36 470
Microbial Biomolecules - Emerging…
Ajay Kumar, Muhammad Bilal, …
Paperback
R3,935
Discovery Miles 39 350
Microbial Pesticides - Biological…
Vladimir V. Gouli, Jose A. P. Marcelino, …
Paperback
R4,629
Discovery Miles 46 290
|