![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
This third edition provides a wide range of different technologies, ranging from conventional growth basic techniques, application of molecular biology, development of resistance mutations, and diagnosis and monitoring treatment response. New and updated chapters cover techniques from the microscopic scale to whole animal models. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Antibiotic Resistance Protocols, Third Edition aims to ensure successful results in the further study of this vital field.
Over the last decades, scientists have been intrigued by the fascinating organisms that inhabit extreme environments. These organisms, known as extremophiles, thrive in habitats which for other terrestrial life-forms are intolerably hostile or even lethal. Based on such technological advances, the study of extremophiles has provided, over the last few years, ground-breaking discoveries that challenge the paradigms of modern biology. In the new bioeconomy, fungi in general, play a very important role in addressing major global challenges, being instrumental for improved resource efficiency, making renewable substitutes for products from fossil resources, upgrading waste streams to valuable food and feed ingredients, counteracting life-style diseases and antibiotic resistance through strengthening the gut biota, making crop plants more robust to survive climate change conditions, and functioning as host organisms for production of new biological drugs. This range of new uses of fungi all stand on the shoulders of the efforts of mycologists over generations. The book is organized in five parts: (I) Biodiversity, Ecology, Genetics and Physiology of Extremophilic Fungi, (II) Biosynthesis of Novel Biomolecules and Extremozymes (III) Bioenergy and Biofuel synthesis, and (IV) Wastewater and biosolids treatment, and (V) Bioremediation.
Invasive fungal infections are a significant cause of morbidity and mortality. Over the past decade there has been a concerted effort to develop reliable methods for the detection of such infections. In Fungal Diagnostics: Methods and Protocols, expert researchers in the field detail the introduction of new technology into a diagnostic setting include ease of use, and rapid turnaround time without compromising sensitivity and specificity. Focusing specifically on fungal detection in clinical settings, fungal diagnostics including, environmental testing, agriculture and food production and veterinary diagnostics. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Fungal Diagnostics: Methods and Protocols seeks to aid scientists into the further study of diagnostic and detection of fungi.
Molecular Mechanisms of Plant and Microbe Coexistence presents studies on the complex and manifold interactions of plants and microbes at the population, genomics and proteomics level. The role of soil microbial diversity in enhancing plant health and plant microbe beneficial symbioses is discussed. Microbial communities are shown in the light of evolution. Main topics include genome coexistence and the functional genomics and proteomics of plant-associated microbes, which could form the basis for new environmentally benign strategies to combat infectious plant diseases and regulate plant growth. Further chapters focus on the role of signaling during the different stages of plant microbe coexistence, in symbiotic or pathogenic relationships, in quorum sensing and plant viral infections. Methods for studying the interactions in the root zone complement the book, which will certainly be of relevance in the practical application to agriculture, food security and for maintaining the balance of our ecosystems. Written for: Researchers in microbiology, plant sciences, plant breeding, agriculture and soil ecology
Provides the latest QMRA methodologies to determine infection risk cause by either accidental microbial infections or deliberate infections caused by terrorism - Reviews the latest methodologies to quantify at every step of the microbial exposure pathways, from the first release of a pathogen to the actual human infection - Provides techniques on how to gather information, on how each microorganism moves through the environment, how to determine their survival rates on various media, and how people are exposed to the microorganism - Explains how QMRA can be used as a tool to measure the impact of interventions and identify the best policies and practices to protect public health and safety - Includes new information on genetic methods - Techniques use to develop risk models for drinking water, groundwater, recreational water, food and pathogens in the indoor environment
Relationship Between Microbes and Environment for Sustainable Ecosystem Services, Volume Three: Microbial Tools for Sustainable Ecosystem Services promotes advances in sustainable solutions, value-added products, and fundamental research in microbes and the environment. Topics include advanced and recent developments in the use of microbes for sustainable development. Volume Three includes concepts and applications of microbes in ecosystem services, with a focus on sustainable practices. The book will include case studies and utility of microbes on both geographical and production system-wide considerations. This book provides reference information ranging from the description of various microbial applications for the sustainability in different aspects of food, energy, environment industry and social development. This book will be helpful to environmental biotechnology scientists, industrial professionals and experts working in the field of microbiology.
This volume of Applied Mycology and Biotechnology completes the set
of two volumes dedicated to the coverage of recent developments on
the theme "Agriculture and Food Production." The first volume
provided overview on fungal physiology, metabolism, genetics and
biotechnology and highlighted their connection with particular
applications to food production. The second volume examines various
specific applications of mycology and fungal biotechnology to food
production and processing. In the second volume coverage on two
remaining areas of the theme, food crop production and applications
in the foods and beverages sector, is presented.
Most of the Earth's biosphere is characterized by low temperatures. Vast areas (>20%) of the soil ecosystem are permanently frozen or are unfrozen for only a few weeks in summer. Permafrost regions occur at high latitudes and also at high ele- tions; a significant part of the global permafrost area is represented by mountains. Permafrost soils are of global interest, since a significant increase in temperature is predicted for polar regions. Global warming will have a great impact on these soils, especially in northern regions, since they contain large amounts of organic carbon and act as carbon sinks, and a temperature increase will result in a release of carbon into the atmosphere. Additionally, the intensified release of the clima- relevant tracer gas methane represents a potential environmental harzard. Significant numbers of viable microorganisms, including bacteria, archaea, p- totrophic cyanobacteria and green algae, fungi and protozoa, are present in per- frost, and the characteristics of these microorganisms reflect the unique and extreme conditions of the permafrost environment. Remarkably, these microorg- isms have been reported to be metabolically active at subzero temperatures, even down to ?20 DegreesC.
"Corynebacterium glutamicum "was discovered in Japan in 1956 as a natural glutamate producer. Its microbial factory qualities, such as its physiological plasticity and robust catalytic functionalities, have since facilitated the development of efficient production processes for amino acids, nucleotides and vitamins. This monograph illustrates how the information gleaned from complete genome sequencing allows the rational engineering of the entire cellular metabolism and how systems biology permits the further optimization of "C. glutamicum" as a biocatalyst. Aspects of gene regulation, metabolic pathways, sugar uptake, protein secretion, cell division and biorefinery applications highlight the enormous biotechnological and biorefinery potential. "
Predatory Prokaryotes focuses on the ecology of predation at the microbial level. It aims to increase the awareness of the great possibilities that predation between microbes offer for studying and discussing basic ecological and general biological concepts. This volume contains chapters on the diversity, ecology and phylogeny of predatory prokaryotes, introducing models of predator prey interactions between microorganisms and presenting analyses of the impact of predation in microbial systems. Laboratory work with Bdellovibrio-and-like organisms (BALOs), the most studied predatory bacteria, is presented through accounts of the cultivation and the molecular techniques used for studying BALOs. A first comparative analysis of different BALO genomes is also provided. Further chapters discuss the chemotactic, regulatory and sensory circuits of these ubiquitous predatory bacteria. Finally, the unique biochemicals used as building blocks and new proteins found in BALO cell walls are reviewed."
In addition to research and discovery, yeast surface display technology has found applications in industrial processes such as biofuel production and environmental pollutant absorption and degradation. Yeast Surface Display: Methods, Protocols, and Applications guides readers through yeast surface antibody display library and antibody engineering, yeast surface display as a tool for protein engineering, yeast surface cDNA display library construction and applications, and yeast surface display in bioassay and industrial applications. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Concise and easy-to-use, Yeast Surface Display: Methods, Protocols, and Applications aims to help accelerate the work of protein chemists, antibody engineers, molecular and cell biologists, and industrial bioengineers.
Carbon Sequestration in Forest Ecosystems is a comprehensive book describing the basic processes of carbon dynamics in forest ecosystems, their contribution to carbon sequestration and implications for mitigating abrupt climate change. This book provides the information on processes, factors and causes influencing carbon sequestration in forest ecosystems. Drawing upon most up-to-date references, this book summarizes the current understanding of carbon sequestration processes in forest ecosystems while identifying knowledge gaps for future research, Thus, this book is a valuable knowledge source for students, scientists, forest managers and policy makers.
First published in 1967, Advances in Microbial Physiology is one of
Academic Press's most renowned and acclaimed series. The Editors
have always striven to provide a diverse range of top-quality
papers on all aspects of microbial physiology. Coverage of
'holistic' topics or whole cell studies such as ion fluxes, stress
responses and motility have gone hand-in-hand with detailed
biochemical analyses of individual transport systems, electron
transport pathways and many aspects of metabolism.
Soil microorganisms play a major role in the degradation and recycling of organic material. Microbes are involved in the food web and strongly contribute to soil fertility. In the past, attention was mainly directed towards free-living or particle-bound microorganisms, while the role of intestinal microbes of soil animals has been neglected. For the first time, "Intestinal Microorganisms of Termites and Other Invertebrates" focuses on the microbes in gut systems of soil animals. It starts with a profound overview of the biology of soil invertebrates. A major part deals with the gut microbiota of termites, the best investigated gut system of invertebrates. Termites are important soil processors in tropical and subtropical regions. Insight is given into the intestinal microbiota of further relevant primary litter decomposers, such as earthworms, springtails, millipeds, and woodlice. Novel techniques for studying intestinal microbes complete the volume.
"Wastewater Microbiology" focuses on microbial contaminants found in wastewater, methods of detection for these contaminants, and methods of cleansing water of microbial contamination. This classic reference has now been updated to focus more exclusively on issues particular to wastewater, with new information on fecal contamination and new molecular methods. The book features new methods to determine cell viability/activity in environmental samples; a new section on bacterial spores as indicators; new information covering disinfection byproducts, UV disinfection, and photoreactivation; and much more. A PowerPoint of figures from the book is available at ftp: //ftp.wiley.com/public/sci_tech_med/wastewater_microbiology.
This book describes cutting-edge science and technology of the characterization, breeding, and development of yeasts and fungi used worldwide in fermentation industries such as alcohol beverage brewing, bread making, and bioethanol production. The book also covers numerous topics and important areas the previous literature has missed, ranging widely from molecular mechanisms to biotechnological applications related to stress response/tolerance of yeasts and fungi. During fermentation processes, cells of yeast and fungus, mostly Saccharomyces and Aspergillus oryzae spp., respectively, are exposed to a variety of fermentation "stresses". Such stresses lead to growth inhibition or cell death. Under severe stress conditions, their fermentation ability and enzyme productivity are rather limited. Therefore, in terms of industrial application, stress tolerance is the key characteristic for yeast and fungal cells. The first part of this book provides stress response/tolerance mechanisms of yeast used for the production of sake, beer, wine, bread, and bioethanol. The second part covers stress response/tolerance mechanisms of fungi during environmental changes and biological processes of industrial fermentation. Readers benefit nicely from the novel understandings and methodologies of these industrial microbes. The book is suitable for both academic scientists and graduate-level students specialized in applied microbiology and biochemistry and biotechnology and for industrial researchers and engineers who are involved in fermentation-based technologies. The fundamental studies described in this book can be applied to the breeding of useful microbes (yeasts, fungi), the production of valuable compounds (ethanol, CO2, amino acids, organic acids, and enzymes) and the development of promising processes to solve environmental issues (bioethanol, biorefinery).
This Volume features protocols for investigating the hydrocarbon- and lipid-specific activities of microbes. They include methods for studying chemotaxis, the colonisation of hydrocarbon surfaces, hydrocarbon uptake, respiration, nitrogen fixation, sulphate reduction, membrane stabilisation through cis-trans isomerisation of membrane fatty acids, and the production of biosurfactants and biopolymers in response to the presence of hydrocarbons. A protocol for studying the ability of microbes to control the concentration of hydrocarbons in their aqueous environment is also described, and phenotyping methods to reveal microbes' more general metabolic activities are presented. Several protocols for investigating acid production in connection with oil souring and biocorrosion by microbes in oil well, oil transportation and storage settings are presented. Lastly, protocols for measuring methanogenesis, as an example of microbial hydrocarbon production, are described.< Hydrocarbon and Lipid Microbiology ProtocolsThere are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
History of Modern Biotechnology, devided into two volumes (69 and 70), is devoted to the developments in different countries. A.L. Demain, A. Fang: The Natural Functions of Secondary Metabolites.- T. Beppu: Development of Applied Microbiology to Modern Biotechnology in Japan.- H. Kumagai: Microbial Production of Amino Acids in Japan.- T.K. Ghose, V.S. Bisaria: Development of Biotechnology in India.- M. Roehr: History of Biotechnology in Austria.- J. Hollo, U.P. Kralovánszky: Biotechnology in Hungary.- A. Fiechter: Biotechnology in Switzerland and a Glance at Germany.
Clostridium difficile, a major nosocomial pathogen shown to be a primary cause of antibiotic-associated disease, has emerged as a highly transmissible and frequently antibiotic-resistant organism, causing a considerable burden on health care systems worldwide. In Clostridium difficile: Methods and Protocols, expert researchers bring together the most recently developed methods for studying the organism, including techniques involving isolation, molecular typing, genomics, genetic manipulation, and the use of animal models. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes highlighting tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Clostridium difficile: Methods and Protocols serves as an ideal guide for scientists now in a position to gain an in-depth understanding of how this organism is transmitted and how it causes disease.
Parasitic protozoa, including some which are agents of human and veterinary diseases, display special cytoplasmic structures and organelles. Metabolic pathways have been discovered in these organelles which open up new possibilities for drug targets. This work presents reviews dealing with cytoskeletal structures such as the mastigont system found in trichomonads, the sub-pellicular microtubules in trypanosomatids and the paraflagellar rod. Further chapters cover structures involved in the synthesis, secretion and uptake of molecules, including the flagellar pocket of trypanosomatids, the reservosome of Trypanosoma and the megasome found in Leishmania, the traffic of vesicles in Entamoeba histolytica, secretory organelles and the secretory events of intestinal parasites during encystation. Reviews on special organelles, such as the kinetoplast-mitochondrion complex, the apicoplast found in Apicomplexa, the glycosomes in Kinetoplastida and the acidocalcisomes found in several protozoa complete the volume.
In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so, then the period from 1881 to 1887, the years when Robert Koch and Petri introduced their key inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, which is remarkably close to the 1898 observations by H. Winterberg. Celebrating its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest unresolved microbiological phenomenon. In the years to follow, the Anomaly was repeatedly confirmed by all microb- logists who cared to compare the cell count in the inoculum to the colony count in the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 1936). By mid-century, the remarkable difference between the two counts became a universally recognized phenomenon, acknowledged by several classics of the time (Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959).
Mycorrhizal fungi are microbial engines which improve plant vigor and soil quality. They play a crucial role in plant nutrient uptake, water relations, ecosystem establishment, plant diversity, and the productivity of plants. Scientific research involves multidisciplinary approaches to understand the adaptation of mycorrhizae to the rhizosphere, mechanism of root colonization, effect on plant physiology and growth, biofertilization, plant resistance and biocontrol of plant pathogens. This book discusses and goes into detail on a number of topics: the molecular basis of nutrient exchange between arbuscular mycorrhizal (AM) fungi and host plants; the role of AM fungi in disease protection, alleviation of soil stresses and increasing grain production; interactions of AM fungi and beneficial saprophytic mycoflora in terms of plant growth promotion; the role of AM fungi in the restoration of native ecosystems; indirect contributions of AM fungi and soil aggregation to plant growth and mycorrhizosphere effect of multitrophic interaction; the mechanisms by which mycorrhizas change a disturbed ecosystem into productive land; the importance of reinstallation of mycorrhizal systems in the rhizosphere is emphasized and their impact on landscape regeneration, and in bioremediation of contaminated soils; Ectomycorrhizae (ECM) and their importance in forest ecosystems and associations of ECM in tropical rain forests function to maintain tropical monodominance; in vitro mycorrhization of micro-propagated plants, and visualizing and quantifying endorhizal fungi; the use of mycorrhizae, mainly AM and ECM, for sustainable agriculture and forestry.
The discovery of Epstein-Barr virus (EBV) by Epstein, Achong, and Barr, reported in 1964 (Lancet 1:702-703), was stimulated by Denis Burkitt's rec- nition of a novel African childhood lymphoma and his postulation that an infectious agent was involved in the tumor's etiology (Nature194:232-234, 1962). Since then, molecular and cellular biological and computational technologies have progressed by leaps and bounds. The advent of recombinant DNA technology opened the possibilities of genetic research more than most would have realized. Not only have the molecular tools permitted the analyses of viral mechanisms, but, importantly, they have formed the basis for discerning viral presence and, subsequently, viral involvement in an increasing number of diseases. Though in every field of science the search for further knowledge is likely to be a limitless phenomenon, the distinct goal in EBV research, namely, to gain sufficient insight into the viral-host interaction to be able to intercept the pathogenic process, is beginning to be realized. Epstein-Barr virus research has effectively entered the postgenomic era that began with the sequencing of the first strains, cloned in the mid to late 1980s.
This new edition offers detailed overviews covering a wide area of fungal growth and reproduction on the mechanistic and molecular level. It includes 18 chapters by eminent scientists in the field and is - like the previous edition - divided into the three sections: Vegetative Processes and Growth, Signals in Growth and Development, and Reproductive Processes. Major topics of the first section include dynamic intracellular processes, apical growth, hyphal fusion, and aging. The second section analyses autoregulatory signals, pheromone action, and photomorphogenesis and gravitropism abiotic signals. The third section reveals details of asexual and sexual development in various fungal model systems, culminating in fruit body formation in basidiomycetes, which is a sector of growing economic potential. Since the publication of the first edition of this volume in 1994 and the second edition in 2006, the field of fungal biology has continued to expand thanks to improvements in omics technologies and the application of genetic tools to an increasing variety of fungal models. Several additional chapters by a new generation of fungal biologists discuss this diversity and guarantee lively reading.
The enormous advances in molecular biology that have been witnessed in . Not recent years have had major impacts on many areas of the biological sciences least of these has been in the field of clinical bacteriology and infectious disease . Molecular Bacteriology: Protocols and ClinicalApplications aims to provide the reader with an insight into the role that molecular methodology has to play in modern medical bacteriology. The introductory chapter ofMolecular Bacteriology: ProtocolsandCli- cal Applications offers a personal overview by a Consultant Medical Microbio- gist of the impact and future potential offered by molecular methods. The next six chapters comprise detailed protocols for a range of such methods . We believe that the use of these protocols should allow the reader to establish the various methods described in his or her own laboratory. In selecting the methods to be included in this section, we have concentrated on those that, arguably, have greatest current relevance to reference clinical bacteriology laboratories; we have deliberately chosen not to give detailed protocols for certain methods, such as multilocus enzyme electrophoresis that, in our opinion, remain the preserve of specialist la- ratories and that are not currently suited for general use. We feel that the methods included in this section will find increasing use in diagnostic laboratories and that it is important that the concepts, advantages, and limitations of each are th- oughly understood by a wide range of workers in the field . |
You may like...
Power-to-Gas: Bridging the Electricity…
Mohammad Amin Mirzaei, Mahdi Habibi, …
Paperback
R3,213
Discovery Miles 32 130
Introduction to Energy Essentials…
Bahman Zohuri, Patrick J. Mcdaniel
Paperback
R3,197
Discovery Miles 31 970
Genetic Patterns in Neuroimaging, An…
Luis Celso Hygino de Cruz
Hardcover
R1,666
Discovery Miles 16 660
FRCR Part 2A - Single Best Answer (SBA…
Tristan Barrett, Nadeem Shaida, …
Paperback
R1,189
Discovery Miles 11 890
Handbook of Supportive and Palliative…
Monica S Krishnan, Margarita Racsa, …
Paperback
R2,848
Discovery Miles 28 480
Kinanthropometry IX - Proceedings of the…
Michael Marfell-Jones, Arthur Stewart, …
Paperback
Proactive Law for Managers - A Hidden…
George Siedel, Helena Haapio
Hardcover
R4,214
Discovery Miles 42 140
|