![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
This book discusses microbial diversity in various habitats and environments, its role in ecosystem maintenance, and its potential applications (e.g. biofertilizers, biocatalysts, antibiotics, other bioactive compounds, exopolysaccharides etc.). The respective chapters, all contributed by renowned experts, offer cutting-edge information in the fields of microbial ecology and biogeography. The book explains the reasons behind the occurrence of various biogeographies and highlights recent tools (e.g. metagenomics) that can aid in biogeography studies by providing information on nucleic acid sequence data, thereby directly identifying microorganisms in various habitats and environments. In turn, the book describes how human intervention results in depletion of biodiversity, and how numerous hotspots are now losing their endemic biodiversity, resulting in the loss of many ecologically important microorganisms. In closing, the book underscores the importance of microbial diversity for sustainable ecosystems.
The bacterial lipopolysaccharide also known as endotoxin is exhaustively covered in the present work. Central emphasis is placed upon the fine chemical structure of the lipopolysaccharide and its significance for understanding their activity and function. In particular, the role it plays in the interaction of bacteria with other biological systems is examined. New aspects of their physicochemical biology are introduced and updates to the current knowledge concerning the lipopolysaccharide are provided. This important class of biomolecules has recently attracted the attention of many investigators, in particular for understanding its involvement in innate immunity, toll-like receptor recognition and intracellular signaling.
Plants produce more than 30,000 types of chemicals, including pharmaceuticals, pigments and other fine chemicals, which is four times more than those obtain ed from microbes. Plant cell culture has been receiving great attention as an alternative for the production of valuable plant derived secondary metabolites, since it has many advantages over whole plant cultivation. However, much more research is required to enhance the culture productivity and reduce the pro cessing costs, which is the key to the commercialization of plant cell culture pro cesses. The recent achievements in related biochemical engineering studies are reviewed in Chapter 1. The effect of gaseous compounds on plant cell behavior has been little studied, and Chapter 2 focuses on these gas concentration effects (including oxygen, carbon dioxide, ethylene and others, such as volatile hor mones like methyl jasmonate) on secondary metabolite production by plant cell cultures. Two metabolites of current interest, i. e. , the antimalarial artemisinin (known as "qing hao su" in China) that is produced by Artemisia annua (sweet wormwood) and taxanes used for anticancer therapy that are produced by species of Taxus, are taken as examples. Bioprocess integration is another hot topic in plant cell culture technology. Because most of the plant secondary meta bolites are toxic to the cells at high concentrations during the culture, removal of the product in situ during the culture can lead to the enhanced productivity. Various integrated bioprocessing techniques are discussed in Chapter 3.
In the first edition of Calcium Signaling Protocols I began by writing "The regula- 2+ tion of intracellular Ca is a common theme presented in many papers over the last 20 2+ or so years and the description of the Ca -sensitive indicator dye fura-2 in 1985 resulted in a massive increase in these types of studies. " This statement is as true in 2005 as it was in 1999, but 20 or so years is now 30 years! There has been some reorganization of the volume such that there are now 22 ch- ters including five new ones, all written by experts in their field. These new chapters 2+ include use of the FlexStation and electrophysiological measurement of Ca channel activity. The book is broken into six parts. Part I is a general coverage of basic theory and the simplest use of fluorescent indicators. Part II covers specialist measurement 2+ systems and Part III covers measurement of Ca channel activity. Assessment of 2+ release of stored Ca is covered in some detail in Part IV, with Parts V and VI cover- 2+ ing specialist measurement techniques and Ca -sensitive targets. Putting a book like this together, even as a second edition, takes time and I am, again, indebted to the individual authors for their help and patience. I am also very grateful to Professor John M. Walker, the series editor, for his continued help and advice over the course of this project.
Grain legume crops, e.g. common bean (Phaseolus vulgaris L.), and soyabeans (Glycine max L.) are amongst the main sources of protein in Africa, Asia and Latin America. Their high protein content derive from their ability, in symbiosis with Rhizobium bacteria, to fix atmospheric nitrogen. Incorporating contributions from molecular biologists, microbiologists, plant breeders and soil scientists, this volume reports the results of an FAO/IAEA Co-ordinated Research Programme (1992-1996), whose main objective was to develop molecular biological methods to study rhizobial ecology. Use of better tracking methods will help enhance biological nitrogen fixation and thus grain legume yields, while reducing their reliance on soil- and/or fertilizer-nitrogen. This volume will be invaluable to scientists working on biological nitrogen fixation, soil microbial ecology and legume production.
Basic and applied microbiology gives a fresh perspective on microbiology. It deals with some of the important issues of the day, including genetically modified food; the increased incidence of food- and waterborne diseases and their control; the introduction of HACCP legislation worldwide; microbial resistance to antimicrobial compounds and the development of multiple drug-resistant organisms; the alleviation of environmental pollution using bioremediation and biofouling; and biocorrosion in water systems, to mention just a few. The title is supported by an e-learning platform with a comprehensive set of animations explaining the basic concepts. The Web portal accompanying the book also provides a gateway to carefully selected Internet sites, unlocking the world of microbiology for the experienced microbiologist and the uninitiated alike.
From Fossils to Astrobiology reviews developments in paleontology and geobiology that relate to the rapidly-developing field of Astrobiology, the study of life in the Universe. Many traditional areas of scientific study, including astronomy, chemistry and planetary science, contribute to Astrobiology, but the study of the record of life on planet Earth is critical in guiding investigations in the rest of the cosmos. In this varied book, expert scientists from 15 countries present peer-reviewed, stimulating reviews of paleontological and astrobiological studies. The overviews of established and emerging techniques for studying modern and ancient microorganisms on Earth and beyond, will be valuable guides to evaluating biosignatures which could be found in the extraterrestrial surface or subsurface within the Solar System and beyond. This volume also provides discussion on the controversial reports of "nanobacteria" in the Martian meteorite ALH84001. It is a unique volume among Astrobiology monographs in focusing on fossil evidence from the geological record and will be valuable to students and researchers alike.
This title discusses various effects of heavy metal exposure to legumes as well as the bioremediation potential of rhizosphere microbes. Availability of heavy metals, their uptake and the effects of metals on various signaling pathways within legumes are presented. Furthermore, the effects of heavy metals to nitrogen fixing microorganisms and how microsymbionts can overcome metal stress is presented in detail. The role of nitrogen fixers in decontamination of heavy metal toxicity, mycoremediation of metal contaminated soils, microbially mediated transformation of heavy metals and action of plant growth promoting rhizobacteria and nitrogen fixers together in detoxifying heavy metals are broadly explained. This volume is a useful tool for scientists, policy makers and progressive legume growers intending to develop safe and healthy legumes for future generations.
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Nanoscience and nanotechnologies are leading to a major point to our understanding of nature. Nanotechnology can be generally defined as creation and use of nano-sized systems, devices, and structures which have special functions or properties because of their small size. This volume on Nanotechnology Applications in Health and Environmental Sciences focuses on biotechnological and environmental applications of nanomaterials. It covers popular and various nanomedical topics such as oncology, genetics, and reconstructive medicine. Additionally, many chapters give leading-edge information on nano-sensor applications and usage in specific disciplines. Also, two chapters on novel subjects have been included on Lantibiotics and microbiota. This book should be useful for nanotechnologists, microbiologists, and researchers interested in nanomedicine and nano-biotechnology, as well as environmental nanotechnology.
The microbiology of drinking water remains an important worldwide concern despite modem progress in science and engineering. Countries that are more technologically advanced have experienced a significant reduction in water borne morbidity within the last 100 years: This reduction has been achieved through the application of effective technologies for the treatment, disinfec tion, and distribution of potable water. However, morbidity resulting from the ingestion of contaminated water persists globally, and the available ep idemiological evidence (Waterborne Diseases in the United States, G. F. Craun, ed. , 1986, CRC Press) demonstrates a dramatic increase in the number of waterborne outbreaks and individual cases within the United States since the mid-1960s. In addition, it should also be noted that the incidence of water borne outbreaks of unknown etiology and those caused by "new" pathogens, such as Campylobaeter sp. , is also increasing in the United States. Although it might be debated whether these increases are real or an artifact resulting from more efficient reporting, it is clear that waterborne morbidity cannot be ignored in the industrialized world. More significantly, it represents one of the most important causes of illness within developing countries. Approxi mately one-half the world's population experiences diseases that are the direct consequence of drinking polluted water. Such illnesses are the primary cause of infant mortality in many Third World countries.
Dr. Hilary Koprowski is the pioneer of live polio vaccine, the first researcher to advance the diagnostic and therapeutic use of monoclonal antibodies, and the developer of the "gold standard" rabies vaccine. A world-reknowned maverick in biomedical research, Koprowski's research methods were often considered controversial and even radical. Nonetheless, he acquired key positions in many research organizations, such as the Rockefeller Foundation, Lederle Labs, and Wistar Institute, initiating landmark studies from cancer research to multiple sclerosis. One of his crowning achievements, the successful crusade for monoclonal antibodies, resulted in his founding of Centocor, a forerunner in the corporate world of biomedicine. This account of Koprowski's life history is a mixture of personal interviews, anecdotes, and legends of the art and science behind the man.
Plant innate immunity is a potential surveillance system of plants and is the first line of defense against invading pathogens. The immune system is a sleeping system in unstressed healthy plants and is activated on perception of the pathogen-associated molecular patterns (PAMP; the pathogen s signature) of invading pathogens. The PAMP alarm/danger signals are perceived by plant pattern-recognition receptors (PRRs). The plant immune system uses several second messengers to encode information generated by the PAMPs and deliver the information downstream of PRRs to proteins which decode/interpret signals and initiate defense gene expression. This book describes the most fascinating PAMP-PRR signaling complex and signal transduction systems. It also discusses the highly complex networks of signaling pathways involved in transmission of the signals to induce distinctly different defense-related genes to mount offence against pathogens."
Mycobacteria is divided into two volumes. The first volume deals with the basic biology of mycobacteria. With its emphasis on the state of the art outlook, this volume includes taxonomy and molecular biology of mycobacteria, modern approaches for detection of mycobacteria, and immunology and immunization against tuberculosis. The second volume covers drug trestments for mycobacteria anad tuberculosis. It outlines trends of discovery and development of chemotherapy, starting from the mid-50's to present day uses of chemotherapy in treating AIDS, drug-resistant tuberculosis, and other non-tuberculosis mycobacterial diseases.
This book series focuses on current progress in the broad field of medical microbiology, and covers both basic and applied topics related to the study of microbes, their interactions with human and animals, and emerging issues relevant for public health. Original research and review articles present and discuss multidisciplinary findings and developments on various aspects of microbiology, infectious diseases, and their diagnosis, treatment and prevention. Advances in Microbiology, Infectious Diseases and Public Health is a subseries of Advances in Experimental Medicine and Biology, which has been publishing significant contributions in the field for over 30 years and is indexed in Medline, Scopus, EMBASE, BIOSIS, Biological Abstracts, CSA, Biological Sciences and Living Resources (ASFA-1), and Biological Sciences. 2016 Impact Factor: 1.881.
This text contains the Proceedings of the Federation of European Microbiological Societies Symposium held in Troia, Portugal, during 18-23 September 1988.
This book provides an up-to-date overview of the various wood and tree fungi that damage trees, lumber, and timber. Special focus is given to identification, prevention, and remediation techniques, and the book bridges the gap between research and application. It covers the fundamentals of cytology and morphology. There is a more practical section describing damage by viruses and bacteria on trees. The habitats of wood fungi are described as well as tree care. Important tree pathogens and wood decay fungi are characterized for prevention and identification. The final section focuses on the positive effects of wood-inhabiting microorganisms.
Aimed at research scientists and biotechnologists, this book is an essential reading for those working with extremophiles and their potential biotechnological application. Here, we provide a comprehensive and reliable source of information on the recent advances and challenges in different aspects of the theme. Written in an accessible language, the book is also a recommended as reference text for anyone interested in this thriving field of research. Over the last decades, the study of extremophiles has provided ground breaking discoveries that challenge our understanding of biochemistry and molecular biology. In the applied side, extremophiles and their enzymes have spawned a multibillion dollar biotechnology industry, with applications spanning biomedical, pharmaceutical, industrial, environmental, and agricultural sectors. Taq DNA polymerase (which was isolated from Thermus aquaticus from a geothermal spring in Yellowstone National Park) is the most well-known example of the potential biotechnological application of extremophiles and their biomolecules. Indeed, the application of extremophiles and their biologically active compounds has opened a new era in biotechnology. However, despite the latest advances, we are just in the beginning of exploring the biotechnological potentials of extremophiles.
This book compiles a diverse and interdisciplinary range of scientific literature, laboratory developments, industrial implications and future prospects covering Entomophagy in 3D food printing to fight against hunger and nutritional deficiencies. Recent developments in Entomphagy in 3D printing of Drosophila based materials, and their nutritional, social, economic, scientific and environmental aspects. are comprehensively covered. Readers will also find shortcomings, guidelines, and industrial prospects for these materials, with emphasis on processing methods for the extraction of sustainable materials through 3D food printing. 3D Printing of Sustainable Insect Materials focuses on the methodology, technology and processing used for utilizing insects in 3D food printing applications, establishing technology-driven knowledge to fight against hunger. Chapters cover the principles for Entomophagy, insect processing methods, modern 3D food printing technologies, and the theoretical and practical aspects of Emtomophagy in 3D printing, with a special focus on future prospects and technologies. This ground-breaking book will serve knowledge to researchers and industry professionals across the food industry with broad coverage of emerging technologies, materials developed through Entomophagy, functional characterization and the technical details required to produce sustainable insect-based materials through 3D food printing.
The control of food safety in modern food processing relies upon HACCP and other systems that identify hazards and define processes to control them. These demand a thorough understanding of the properties of microbial pathogens under all the conditions that could be found in foods and the food processing environment. Detailed information about each of the main organisms responsible for causing microbial food poisoning is presented here in an accessible and systematic way. An overview of key properties for each organism is followed by a series of tables detailing the response of the organism under a range of variable conditions. This information has been prepared by the International Commission for the Microbiological Specifications of Foods (ICMSF).
Systems biology is the study of interactions between assorted components of biological systems with the aim of acquiring new insights into how organisms function and respond to different stimuli. Although more and more efforts are being directed toward examining systems biology in complex multi-cellular organisms, the bulk of system-level analyses conducted to date have focused on the biology of microbes. In, Microbial Systems Biology: Methods and Protocols expert researchers in the field describe the utility and attributes of different tools (both experimental and computational) that are used for studying microbial systems. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microbial Systems Biology: Methods and Protocols introduces and aids scientists in using the various tools that are currently available for analysis, modification and utilization of microbial organisms.
This book focuses on threats, especially contaminants, to drinking water and the supply system, especially in municipalities but also in industrial and even residential settings. The safety, security, and suitability landscape can be described as dynamic and complex stemming from necessity and hence culpability due to the emerging threats and risks, vis-a-vis globalization resulting in new forms of contaminants being used due to new technologies. The book provides knowledge and guidance for engineers, scientists, designers, researchers, and students who are involved in water, sustainability, and study of security issues. This book starts out with basics of water usage, current statistics, and an overview ofwater resources. The book then introduces different scenarios of safety and security and areas that researchers need to focus. Following that, the book presents different types of contaminants - inadvertent, intentional, or incidental. The next section presents different methodologies of contamination sensing/detection and remediation strategies as per guidance and standards set globally. The book then concludes with selected chapters on water management, including critical infrastructure that is critical to maintaining safe water supplies to cities and municipalities. Each chapter includes descriptive information for professionals in their respective fields. The breadth of chapters offers insights into how science (physical, natural, and social) and technology can support new developments to manage the complexity resident within the evolving threat and risk landscape.
Success in meeting the challenge to produce the commercial products anticipated by the exploitation of biological processes depends upon provid ing effective separation protocols. Effectiveness can be measured in terms of selectivity, purity, resolution and validatory success. The major processing problems are associated with either the selective recovery of molecules which are present in low concentrations from complex mixtures or the selective removal of contaminants from the desired molecule. Central to the evolution of processes satisfying this demand are the regulatory requirements being imposed by governments on the purity of a product, especially in the health care market. Synthetic organic chemists are increasingly finding it advantageous to conduct one or more steps using either enzymic biotransformations where molecules with a single and consistent stereochemistry or chirality are required. The underlying princi ples behind the methods, techniques and processes currently being used and developed commercially rely upon the biospecific nature and properties of the desired molecule. When these factors are married to the more traditional techniques of precipitation, chromatography, liquid-liquid extraction and membrane processes, powerful tools emerge, allowing highly selective separations to be designed. The logical extension of these combinations is to apply genetic engineering techniques to influence the separations at a more fundamental and structural level by modifying the target protein at source, during its synthesis, to facilitate its separation in a given, selective manner, leading to the distinct possibility of producing 'designer' separation programmes."
Humans have utilized the bioactive principles of different plants for various beneficial physiological properties including antimicrobial properties for many centuries. However, interests of using medicinal plants declined in the 20th century with the availability of effective synthetic antimicrobial drugs. The development of microbial resistance to various drugs has accelerated research interests towards the use of phytochemicals as alternatives to synthetic drugs in the recent years. This book presents an comprehensive reviews on the antimicrobial and antiviral properties of numerous recently reported phytochemicals, and their mechanisms of antimicrobial actions. Some of the chapters have critically discussed the beneficial and adverse effects of antibacterial, and stimulatory activities of dietary phytochemicals on rumen microbial populations, and gut microbial populations of humans and animals. Microbial adaptation and resistance of microbes to phytochemicals has also been highlighted. On the applied apects, the use of phytochemicals against drug resistance microbes, to treat microbial diseases, for food preservation, to inhibit methanogenic archaea in the rumen, and to modulate lipid biohydrogenating microbial populations to increase conjugated linoleic acids in animal-derived foods have been presented in different chapters.
Metal contamination is an increasing ecological and eco-toxicological risk. Understanding the processes involved in metal mobilization, sorption and mineralization in soils are key features for soil bioremediation. Following an introduction to the physical, chemical and biological components of contaminated soils, various chapters address the interactions of soil, microorganisms, plants and the water phase necessary to transfer metals into biological systems. These include topics such as potential hazards at mining sites; rare earth elements in biotic and abiotic acidic systems; manganese redox reactions; biomineralisation, uranium in seepage water; metal-resistant streptomycetes; mycorrhiza in re-forestation; metal (hyper)accummulation in plants; microbial metal uptake; and their potential for bioremediation. This book will be of interest to soil biologists, geologists and chemists, researchers and graduate students, as well as consulting companies and small enterprises involved in bioremediation. |
![]() ![]() You may like...
Conway's Game of Life - Mathematics and…
Nathaniel Johnston, Dave Greene
Hardcover
R2,030
Discovery Miles 20 300
|