![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
In the post genomic era, understanding of the innate immune system is enriched by findings on the specificity of innate immune reactions as well as to novel functions that do not strictly correlate with immunological defense and surveillance, immune modulation or inflammation. This volume covers natural killer cells, mast cells, phagocytes, toll-like receptors, complement, host defense in plants and invertebrates, evasion strategies of microorganisms, pathophysiology, protein structures, design of therapeutics, and experimental approaches.
The symposium, "Microbial Diversity in Time and Space," was held in the Sanjo Conference Hall, University of Tokyo, Tokyo, Japan, October 24-26, 1994. The symposium was organized under the auspices of the Japanese Society of Microbial Ecology and co-sponsored by the International Union of Biological Sciences (IUBS), International Union of Microbiological Societies (IUMS), International Committee on Microbial Ecology (ICOME), and the Japanese Society of Ecology. The aim of the symposium was to stress the importance of the global role of microorganisms in developing and maintaining biodiversity. Twenty-four speakers from seven countries presented papers in the symposium and in the workshop, "Microbial Diversity and Cycling of Bioelements," that followed the symposium. Papers presented at the symposium are published in this proceedings. Discussions of the workshop, which were energetic and enthusiastic, are also summarized in this proceedings. The symposium provided an opportunity to address the role of microorganisms in global cycles and as the basic support ofbiodiversity on the planet. Previously unrecognized as both contributing to and sustaining biodiversity, microorganisms are now considered to be primary elements of, and a driving force in, biodiversity. Financial support was provided for the symposium by the CIBA GEIGY Foundation for the Promotion of Science, Naito Foundation, and the Uchida Foundation of the Ocean Research Institute, University of Tokyo. Support from these foundations is gratefully acknowledged. CONTENTS Microbial Biodiversity-Global Aspects ................................. 1 Rita R. Colwell 2. Importance of Community Relationships in Biodiversity ...................
The tetracyclines have an illustrious history as therapeutic agents which dates back over half a century. Initially discovered as an antibiotic in 1947, the four ringed molecule has captured the fancy of chemists and biologists over the ensuing decades. Of further interest, as described in the chapter by George Armelagos, tetracyclines were already part of earlier cultures, 1500-1700 years ago, as revealed in traces of drug found in Sudanese Nubian mummies. The diversity of chapters which this book presents to the reader should illus trate the many disciplines which have examined and seen benefits from these fascinating natural molecules. From antibacterial to anti-inflammatory to anti autoimmunity to gene regulation, tetracyclines have been modified and redesigned for various novel properties. Some have called this molecule a biol ogist's dream because of its versatility, but others have seen it as a chemist's nightmare because of the synthetic chemistry challenges and "chameleon-like" properties (see the chapter by S. Schneider).
Cold-adapted microorganisms play a major role in nutrient turnover and primary biomass production in cold ecosystems and have important applications in biotechnology and in the study of food spoilage microorganisms. Divided into three main sections, the book covers the major aspects of biodiversity in cold ecosystems, the physiology and molecular adaptation mechanisms, and the various biomolecules related to cold adaptation.
Current information in applied microbioogy is provided in this text supported by an extensive bibliography.
Achieving environmental sustainability with rapid industrialization is currently a major global challenge. Industries are the key economic drivers, but are also the main polluters as untreated/partially treated effluents from industry are usually discharged into the aquatic environment or dumped. Industrial effluents often contain highly toxic and hazardous pollutants, which cause ecological damage and present and health hazards to living beings. As such, there is a pressing need to find ecofriendly solutions to deal with industrial waste, and to develop sustainable methods for treating/detoxifying waste before it's released into the environment. As a low cost and eco-friendly clean technology, bioremediation can offer a sustainable alternative to conventional remediation technologies for the treatment and management of industrial wastes. This book (Volume II) describes the role of biological agents in the degradation and detoxification of organic and inorganic pollutants in industrial wastes, and presents recent bioremediation approaches for waste treatment and management, such as constructed wetlands, electro- bioremediation and nano-bioremediation, as well as microbial fuel cells. It appeals to students, researchers, scientists, industry professionals and experts in the field of microbiology, biotechnology, environmental sciences, eco-toxicology, environmental remediation and waste management and other relevant areas who are interested in biodegradation and bioremediation of industrial wastes for environmental safety.
The use of renewable bioenergy is increasing, and so is the production of associated wastes: biomass ashes. This book presents eleven chapters on the options for recycling such biomass ashes, ranging from their use as fertilizer in agriculture and forestry to their application as a supplement for the production of cement-based materials or bricks. The book also examines the pros and cons for each of the different uses of biomass ashes.
The introduction of synthetic organic chemicals into the environment during the last few decades has given rise to major concern about the ecotoxicological effects and ultimate fate of these compounds. The pollutants that are considered to be most hazardous because of their intrinsic toxicity, high exposure level, or recalcitrant behavior in the environment have been placed on blacklists and other policy priority lists. The fate of synthetic compounds that enter the environment is mainly determined by their rate of biodegradation, which therefore also has a major effect on the degree of bioaccumulation and the risk of ecotoxicological effects. The degree and rate of biodegradation is also of critical importance for the feasibility of biological techniques to clean up contaminated sites and waste streams. The biodegradation of xenobiotics has thus been the subject of numerous studies, which resulted in thousands of publications in scientific journals, books, and conference proceedings. These studies led to a deeper understanding of the diversity of biodegradation processes. As a result, it has become possible to enhance the rate of degradation of recalcitrant pollutants during biological treatment and to design completely new treatment processes. At present, much work is being done to expand the range of pollutants to which biodegradation can be applied, and to make treatment techniques less expensive and better applicable for waste streams which are difficult to handle.
The objectives of this Second Edition of Biotechnology: A
Laboratory Course remain unchanged: to create a text that consists
of a series of laboratory exercises that integrate molecular
biology with protein biochemistry techniques while providing a
continuum of experiments. The course begins with basic techniques
and culminates in the utilization of previously acquired technical
experience and experimental material. Two organisms, "Sacchaomyces
cerevisiae" and "Escherichia coli," a single plasmid, and a single
enzyme are the experimental material, yet the procedures and
principles demonstrated are widely applicable to other systems.
This text will serve as an excellent aid in the establishment or
instruction of introductory courses in the biological sciences.
Endophytic prokaryotes can invade the tissue of the host plant without triggering defense reactions or disease symptoms. Instead, they promote the growth of the host plant due to their ability to fix atmospheric dinitrogen and/or to produce plant growth-promoting substances. This Microbiology Monographs volume presents up-to-date findings on the interactions between plants and beneficial prokaryotes, including the use of genomics for the analysis of plant-prokaryote symbioses and their evolution. Rhizobia-legume, actinorhizal and cyanobacterial symbioses are presented.
This publication contains full papers of both oral and poster presentations of the symposium "Immobilized Cells: Basics and Applications" that was held in Noordwijkerhout, The Netherlands, 26-29 November 1995. This volume covers recent developments in the field of immobilization e.g.: new support materials, characterization of support materials, kinetic characterizations, dynamic modelling, bioreactor types, scale up and applications are also given. Applications in the field of medicine, fermentation technology, food technology and environmental technology are described. Guidelines for research with immobilized cells. Based on the scientific sessions a strategy of research and methods for characterization of immobilized cells, especially in view of applications are given. The goal was to relate basic research to applications and to extract guidelines for characterization of immobilized cells in view of process design and application from the contributions. The manuscripts presented in these proceedings give an extensive and recent overview of the research and applications of immobilized-cell technology.
Neutrophils, the most abundant white cells in humans, serve as the primary cellular defense against infection. Neutrophil Methods and Protocols, Second Edition provides a concise set of protocols written by leading researchers in the field for assessing basic neutrophil functions, investigating specialized areas in neutrophil research, and completing step diagnostic assays of common neutrophil disorders. Topics covered include an overview of neutrophils and their role in host defense and inflammation; methods most commonly used for isolating neutrophils from humans and other animal species; procedures for subcellular fractionation of human neutrophils, analysis of in vivo transmigrated neutrophils, generation of mature neutrophils from induced pluripotent stem cells and analysis of neutrophil gene expression; methods for investigating priming, oxidant production, phagocytosis, bactericidal activity and extracellular trap formation and protocols for investigating neutrophil adhesion, chemotaxis and outside-in signaling via integrins. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Neutrophil Methods and Protocols, Second Edition is a comprehensive source for detailed explanations and applications of the most modern methodological advances in neutrophil biology. Both basic scientists and clinicians will find a collection of this caliber to be an invaluable aid in their work with neutrophils.
Mycorrhiza will be the focus of research and study for the coming decade. Successful survival and maintenance of plant cover is mostly dependent on mycorrhization. During the last decade about ten books have appeared on various aspects of mycorrhiza, including two on methodology. The present book has been compiled to give a complete and comprehensive description of the topic to the students and researchers in botany, applied mycology, biotechnology, forestry and agriculture. The book will also be useful to planners dealing with biofertilizers and forestation. Besides topics of academic interest, the volume includes several aspects which are unique and are written about for the first time, e.g.: Arbuscular Mycorrhizal symbiosis - recognition and specificity; Mycorrhizal Integration and cellular compatibility between Endomycorrhizal symbionts; Cost - economics of existing methodology for inoculum production of vesicular-arbuscular mycorrhizal fungi; Mycorrhiza: Ecological Implications of Plant interactions; Outplanting performance of mycorrhizal inoculated seedlings; Fluorescence microscopy in mycorrhiza studies and Ectomycorrhizal fungi as experimental organism. Other aspects not mentioned above include most recent reviews concerning vesicular-arbuscular mycorrhiza and ectomycorrhizae. The different review chapters have been written by world authorities in their respective specialisations giving more up to date information than is provided anywhere else. This book deals with all major aspects of mycorrhiza, giving structure, ultrastructure, ecology and applications in agriculture and forestry.
This Volume provides protocols for the biochemical analysis of hydrocarbon- and lipid-relevant products, cell components and activities of microbes that interact with hydrophobic compounds. They include methods for the extraction, purification and characterisation of surface tension-reducing bioemulsifiers and biosurfactants that increase the surface area and hence bioavailability of hydrophobic substrates. Protocols for the isolation and biochemical analysis of lipids and polyhydroxyalkanoates, food storage products made during nutrient abundance that represent important biotechnological products, are presented. The extraction of membrane lipid rafts, sub-organelles that fulfil important functional roles for the cell membrane, and the isolation and characterisation of membrane phospholipid biomarkers, are also described. The purification and characterisation of integral membrane hydrocarbon-oxidising enzymes are addressed. Lastly, two generic methods for the genetic analysis of catabolic pathways and analysis of ligand binding are presented. Hydrocarbon and Lipid Microbiology ProtocolsThere are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
In recent years, rapid technological advances and changes in
agricultural management have taken place. These have yielded
benefits to society but have also generated new and significant
environmental problems. Novel questions and challenges relating to
agricultural practice and soil microbial ecology, ecotoxicology,
biotechnology, and bioremediation must be addressed. As a
consequence, the fields of soil microbiology and biochemistry have
been highlighted.
This Volume presents a comprehensive series of generic protocols for the genetic and genomic analysis of prokaryotic isolates. Genetic methods for functional analyses employ the latest cloning vectors, gene fusion methods and transposon mutagenesis systems, as well as systems for introducing protease-cleavage sequences into permissive sites in proteins under investigation. Genomic methods described include protocols for transcriptomics, shotgun proteomics, interactomics, metabolic profiling, and lipidomics. Bioinformatic tools for genome annotation, transcriptome display and the integration of transcriptomic data into genome-scale metabolic reconstructions are described. Protocols for 13C-based metabolic flux determinations and analysis of the hierarchical and metabolic regulation of fluxes through pathways are included. The Volume thus enables investigators to functionally analyse an isolate over the entire cellular range spanning the gene, the genome, the transcript repertoire, the proteome, the interactome, the metabolic network with its nodes and their regulatory hierarchies, and the metabolic fluxes and their physiological controls. Hydrocarbon and Lipid Microbiology Protocols There are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
This volume gives an insight into what a group of contemporary plankton biologists think about the utility, virtues, strengths and theoretical and practical weaknesses of J.H. Connell's Intermediate Disturbance Hypothesis within the context of phytoplankton ecology. The sequence of papers in this volume moves from particular case studies to more general and finally theoretical approaches.
The aim of Plant Virology Protocols is to provide a source of infor- tion to guide the reader through the wide range of methods involved in gen- ating transgenic plants that are resistant to plant viruses. To this end, we have commissioned a wide-ranging list of chapters that will cover the methods required for: plant virus isolation; RNA extraction; cloning coat p- tein genes; introduction of the coat protein gene into the plant genome; and testing transgenic plants for resistance. The book then moves on to treatments of the mechanisms of resistance, the problems encountered with field testing, and key ethical issues surrounding transgenic technology. Although Plant Virology Protocols deals with the cloning and expression of the coat protein gene, the techniques described can be equally applied to other viral genes and nucleotide sequences, many of which have also been shown to afford protection when introduced into plants. The coat protein has, however, been the most widely applied, and as such has been selected to illustrate the techniques involved. Plant Virology Protocols has been divided into six major sections, c- taining 55 chapters in total.
The books in this acclaimed series are the most detailed, up-to-date accounts of the field available. Volume 3 explores the oncogenic potential shared by retroviruses of different species, the widespread presence of retrovirues in nature, and the role of retroviruses in normal development and pathogenesis.
The book summarizes the latest research and developments in dairy biotechnology and engineering. It provides a strategic approach for readers relating to fundamental research and practical work with lactic acid bacteria. The book covers every aspect from identification, ecology, taxonomy and industrial use. All contributors are experts who have substantial experience in the corresponding research field. The book is intended for researchers in the human, animal, and food sciences related to lactic acid bacteria. Dr. Heping Zhang is a Professor at the Key Laboratory of Dairy Biotechnology and Engineering Ministry of Education, Inner Mongolia Agricultural University, China. Dr. Yimin Cai works in Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Japan.
Applied Microbiology and Molecular Biology in Oil Field Systems addresses the major problems microbes cause in oil fields, (e.g. biocorrosion and souring) and how beneficial microbial activities may be exploited (e.g. MEOR and biofuels). The book describes theoretical and practical approaches to specific Molecular Microbiological Methods (MMM), and is written by leading authorities in the field from both academia and industry. The book describes how MMM can be applied to faciliate better management of oil reservoirs and downstream processes. The book is innovative in that it utilises real industrial case studies which gives useful technical and scientific information to researchers, engineers and microbiologists working with oil, gas and petroleum systems. Content Level Professional/practitioner
1 2 MARCEL B. ROBERFROID AND GLENN R. GIBSON 1 Universite Catholique de Louvain, Department of Pharmaceutical Sciences, Avenue Mounier 73, B-1200 Brussels, BELGIUM 2 Food Microbial Sciences Unit, Department of Food Science and Technology, The University of Reading, Reading, UK It is clear that diet fulfils a number of important human requirements. These include the provision of sufficient nutrients to meet the requirements of essential metabolic pathways, as well as the sensory (and social) values associated with eating. It is also evident that diet may control and modulate various body functions in a manner that can reduce the risk of certain diseases. This very broad view of nutrition has led to the development of foodstuffs with added "functionality." Many different definitions of functional foods have arisen. Most of these complicate the simple issue that a functional food is merely a dietary ingredient(s) that can have positive properties above its normal nutritional value. Other terms used to describe such foods include vitafoods, nutraceuticals, pharmafoods, foods for specified health use, health foods, designer foods, etc. Despite some trepidation, the concept has recently attracted much interest through a vast number of articles in both the popular and scientific media.
Since penicillin and salvarsan were discovered, a number of new drugs to combat infectious diseases have been developed, but at the same time, the number of multi-resistant microorganism strains is increasing. Thus, the design of new and effective antibacterial, antiviral and antifungal agents will be a major challenge in the next years. This book reviews the current state-of-the-art in antimicrobial research and discusses new strategies for the design and discovery of novel therapies. Topics covered include the use of genetic engineering, genome mining, manipulation of gene clusters, X-ray and neutron scattering as well as the antimicrobial effects of essential oils, antimicrobial agents of plant origin, beta-lactam antibiotics, antimicrobial peptides, and cell-wall-affecting antifungal antibiotics.
Microorganisms are capable of producing a wide variety of biopolymers. Homopolymer peptides, which are made up of only a single type of amino acid, are far less ubiquitous. The only two amino-acid homopolymers known to occur in nature are presented in this volume. Poly-epsilon-L-lysine is a polycationic peptide and exhibits antimicrobial activity against a wide spectrum of microorganisms. It is both safe and biodegradable and is therefore used as a food preservative in several countries. In addition, there has been great interest in medical and other applications of poly-lysine and its derivatives. In contrast, poly-gamma-glutamic acid is an unusual anionic polypeptide. It is also water soluble, biodegradable, edible, non-toxic and non-immunogenic and can be chemically modified to introduce various drugs. These features are very useful for pharmaceutical and biomedical applications. Poly-glutamic acid is also a highly attractive as a food ingredient.
The fascinating machinery that life uses to harness energy is the focus of this volume of the Advances in Photosynthesis and Respiration series. Experts in the field communicate their insights into the mechanisms that govern biological energy conversion from the atomic scale to the physiological integration within organisms. By leveraging the power of current structural techniques the authors reveal the inner workings of life. |
You may like...
Human Friendly Robotics - 10th…
Fanny Ficuciello, Fabio Ruggiero, …
Hardcover
R2,274
Discovery Miles 22 740
Mindcraft - The Theory And Practice Of…
Franzel du Plooy-Cilliers, Jared Smith
Paperback
R466
Discovery Miles 4 660
|