![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
This book shares the latest insights into the genetic basis of molecular communication between plants and their microbial consortia. Further, the book highlights the capabilities of the rhizosphere and endosphere, which help manage ecosystem responses to climate change, nutrient cycling and sequestration of carbon; and discusses their application to the development and management of renewable energy sources. In their natural environments, plants are surrounded by a tremendous number of microorganisms. Some microbes directly interact with plants in a mutually beneficial fashion, while others colonize plants solely for their own advantage. In addition, microbes can indirectly affect plants by drastically altering their environments. Understanding the complex nature of the plant-microbe interface (PMI) can pave the way for novel strategies to improve plant productivity in an eco-friendly manner. The PMI approach focuses on understanding the physical, molecular, and chemical interactions between organisms in order to determine their functional roles in biological, physical, chemical and environmental systems. Although several metabolites from plants and microbes have now been fully characterized, their roles in chemical interactions between these associates remain poorly understood, and require further investigation.
The currently available means of combating fungal infections are weak and clumsy. The application of fungal genomics offers an unparalleled opportunity to develop novel antifungal drugs. Interestingly, several novel antifungal drug targets have already been identified and validated. However, it is premature to expect a novel antifungal agent in clinical setting as drug discovery programs are still in their infancy. In addition to classical and genomic approaches to drug discovery, treasure trove based on natural products and phytomedicine can provide a multitude of alternative modes of combating fungal infection. This book incisively addresses essential topics on various aspects pertaining to fungal diseases in human and animals, their reservoir, fungal pathogenesis, their management and recent advances in their treatment. Issues of antifungal drug toxicity, especially nephrotoxicity, are also discussed. The development of resistance in fungal pathogens, including multidrug resistance and its mechanism, is dealt with in two chapters. Diverse diagnostic approaches to fungal infections are also reviewed. The combinational drug strategies used in combating invasive fungal infections are addressed in detail. The management of pulmonary mycoses in stem cell transplantation is also given special focus. Novel antifungal drugs (synthetic and herbal), fungal vaccines, and metabolic pathways as drug targets are discussed in detail in three different chapters. Subsequently the roles of innate immunity, cytokine therapy and immunomodulators in the treatment of fungal infections are elaborated upon. As novel drug delivery systems have a great potential for modifying the pharmacokinetics of medications, the last chapter takes this fact into consideration in its examination of state-of-the-art delivery systems in controlling fungal infections.
This first volume of the Trilogy of Traditional Foods, part of the ISEKI Food Series, covers general and consumer aspects of traditional foods. It offers numerous recipes of traditional foods from across the world, with some chapters providing detailed descriptions on how to mix, cook, bake or store a particular food item in order to produce the desired effect. Traditional Foods; General and Consumer Aspects is divided into six sections. The first section focuses on general aspects of traditional foods and covers the perception of traditional foods and some general descriptions of traditional foods in different countries. This is followed by sections on Traditional Dairy Products, Traditional Cereal Based Products, Traditional Meat and Fish Products, Traditional Beverages and Traditional Deserts, Side Dishes and Oil products from various countries. The international List of Contributors, which includes authors from China, Bulgaria, Portugal, France, Norway, Romania, Slovakia, and Brazil, to name a few, shows its truly international perspective. The volume caters to the practicing food professional as well as the interested reader.
The birth and the development of molecular biology and, subsequently, of genetic engineering and biotechnology cannot be separated from the advancements in our knowledge of the genetics, biochemistry and physiology of bacteria and bacter- phages. Also most of the tools employed nowadays by biotechnologists are of bacterial (or bacteriophage) origin and the playground for most of the DNA manipulations still remains within bacteria. The relative simplicity of the bacterial cell, the short gene- tion times, the well defined and inexpensive culturing conditions which characterize bacteria and the auto-catalytic process whereby a wealth of in-depth information has been accumulated throughout the years have significantly contributed to generate a large number of knowledge-based, reliable and exploitable biological systems. The subtle relationships between phages and their hosts have produced a large amount of information and allowed the identification and characterization of a number of components which play essential roles in fundamental biological p- cesses such as DNA duplication, recombination, transcription and translation. For instance, to remain within the topic of this book, two important players in the or- nization of the nucleoid, FIS and IHF, have been discovered in this way. Indeed, it is difficult to find a single fundamental biological process whose structural and functional aspects are better known than in bacteria.
Phosphorus (P) is a finite resource which is essential for life. It is a limiting nutrient in many ecosystems but also a pollutant which can affect biodiversity in terrestrial ecosystems and change the ecology of water bodies. This book collects the latest information on biological processes in soil P cycling, which to date have remained much less understood than physico-chemical processes. The methods section presents spectroscopic techniques and the characterization of microbial P forms, as well as the use of tracers, molecular approaches and modeling of soil-plant systems. The section on processes deals with mycorrhizal symbioses, microbial P solubilization, soil macrofauna, phosphatase enzymes and rhizosphere processes. On the system level, P cycling is examined for grasslands, arctic and alpine soils, forest plantations, tropical forests, and dryland regions. Further, P management with respect to animal production and cropping, and the interactions between global change and P cycling, are treated.
This book describes the vast variety of xenobiotics, such as pesticides, antibiotics, antibiotic resistance genes, agrochemicals and other pollutants, their interactions with the soil environment, and the currently available strategies and techniques for soil decontamination and bioremediation. Topics covered include: transport mechanisms of pollutants along the Himalayas; use of earthworms in biomonitoring; metagenomic strategies for assessing contaminated sites; xenobiotics in the food chain; phyto-chemical remediation; biodegradation by fungi; and the use of enzymes and potential microbes in biotransformation. Accordingly, the book offers a valuable guide for scientists in the fields of environmental ecology, soil and food sciences, agriculture, and applied microbiology.
Innovative technologies are propelling microbiology into an exciting new era which will witness the harnessing and control of complex microbial communities in a huge variety of applications in the industrial, medical and environmental spheres. This book presents emerging molecular methods that allow the diversity of a microbial community to be surveyed and its functions to be investigated.
This unique book explores the role of retrotransposons in human health and disease. The ability of retrotransposons to affect the structure of human genes is recognized since the late 80's. However, the advances of deep-sequencing technologies have shed new light on the extent of retrotransposon-mediated genome variations. These progresses have also led to the discovery that retrotransposon activity is not restricted to the germline - resulting in inheritable genetic variations - but can also mobilize in somatic tissues, such as embryonic stem cells, neuronal progenitor cells, or in many cancers. This book covers topics related to the effects of retrotransposon insertions, and their consequences on germline and somatic genome dynamics, but also discuss the role and impact of retrotransposons sequences in a broader context, including a number of novel topics that emerged recently (long non-coding RNA, neuronal disorders, exaptation) with unexpected connections between retrotransposons, stem cell maintenance, placentation, circadian cycles or aging.
The central theme of this book "Microbial BioEnergy: Hydrogen Production" is focused on the biological machinery that microorganisms use to produce hydrogen gas.The book summarizes the achievements over the past decade in the biochemistry, structural and molecular biology, genomics and applied aspects of microbial H2-production, including microbial fuel cells (MFC), by phototrophs such as purple sulfur and non-sulfur bacteria ("Thiocapsa" spp., "Rhodobacter "and "Rhodopseudomonas" spp.) microalgae ("Chlamydomonas")and cyanobacteria ("Anabaena spp.") along with anaerobes and thermophiles such as "Caldicellulosiruptor "and "Thermotoga." This is the first bookof this series entirely devoted to microbial bio-hydrogen production and is intended to be a precious source of information for PhD students, researchers and undergraduates from disciplines such as microbiology, biochemistry, biotechnology, photochemistry and chemical engineering, interested in basic and applied sciences."
Agriculture is the main occupation in India and about 75% of its population depends directly or indirectly on agriculture for their livelihood. It is the dominant sector that contributes 18% of the gross domestic product. Thus, agriculture is the foundation of the Indian economy. The maximum share of Indian exports is also from the agriculture sector. As the population of the country is increasing trem- dously, approximately at the rate of 19 million every year over the existing popu- tion of more than 1 billion (approximately 1. 18 billion), the food grain production must necessarily be increased. This can be done by increasing crop production to match the population growth rate of 2. 2% per annum, which is expected to stabilize at 1. 53 billion around 2050. There is no doubt that the Green Revolution in India during the late 1960s brought self-sufficiency in food grain production, mainly through the increase in rice and wheat crop yields - the two main crops of the country which play an important role from food security point of view. However, the excessive use of fertilizers and pesticides, and the neglect of organic manures for these crops, has resulted in the deterioration of physical, chemical and biological health of the ri- and wheat-growing soils. Owing to the deterioration of the health of these soils, the productivity of the rice-wheat cropping system has now either got reduced or in some places has become constant for the last decade.
This third edition provides a wide range of different technologies, ranging from conventional growth basic techniques, application of molecular biology, development of resistance mutations, and diagnosis and monitoring treatment response. New and updated chapters cover techniques from the microscopic scale to whole animal models. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Antibiotic Resistance Protocols, Third Edition aims to ensure successful results in the further study of this vital field.
Over the last decades, scientists have been intrigued by the fascinating organisms that inhabit extreme environments. These organisms, known as extremophiles, thrive in habitats which for other terrestrial life-forms are intolerably hostile or even lethal. Based on such technological advances, the study of extremophiles has provided, over the last few years, ground-breaking discoveries that challenge the paradigms of modern biology. In the new bioeconomy, fungi in general, play a very important role in addressing major global challenges, being instrumental for improved resource efficiency, making renewable substitutes for products from fossil resources, upgrading waste streams to valuable food and feed ingredients, counteracting life-style diseases and antibiotic resistance through strengthening the gut biota, making crop plants more robust to survive climate change conditions, and functioning as host organisms for production of new biological drugs. This range of new uses of fungi all stand on the shoulders of the efforts of mycologists over generations. The book is organized in five parts: (I) Biodiversity, Ecology, Genetics and Physiology of Extremophilic Fungi, (II) Biosynthesis of Novel Biomolecules and Extremozymes (III) Bioenergy and Biofuel synthesis, and (IV) Wastewater and biosolids treatment, and (V) Bioremediation.
Invasive fungal infections are a significant cause of morbidity and mortality. Over the past decade there has been a concerted effort to develop reliable methods for the detection of such infections. In Fungal Diagnostics: Methods and Protocols, expert researchers in the field detail the introduction of new technology into a diagnostic setting include ease of use, and rapid turnaround time without compromising sensitivity and specificity. Focusing specifically on fungal detection in clinical settings, fungal diagnostics including, environmental testing, agriculture and food production and veterinary diagnostics. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Fungal Diagnostics: Methods and Protocols seeks to aid scientists into the further study of diagnostic and detection of fungi.
Molecular Mechanisms of Plant and Microbe Coexistence presents studies on the complex and manifold interactions of plants and microbes at the population, genomics and proteomics level. The role of soil microbial diversity in enhancing plant health and plant microbe beneficial symbioses is discussed. Microbial communities are shown in the light of evolution. Main topics include genome coexistence and the functional genomics and proteomics of plant-associated microbes, which could form the basis for new environmentally benign strategies to combat infectious plant diseases and regulate plant growth. Further chapters focus on the role of signaling during the different stages of plant microbe coexistence, in symbiotic or pathogenic relationships, in quorum sensing and plant viral infections. Methods for studying the interactions in the root zone complement the book, which will certainly be of relevance in the practical application to agriculture, food security and for maintaining the balance of our ecosystems. Written for: Researchers in microbiology, plant sciences, plant breeding, agriculture and soil ecology
Provides the latest QMRA methodologies to determine infection risk cause by either accidental microbial infections or deliberate infections caused by terrorism - Reviews the latest methodologies to quantify at every step of the microbial exposure pathways, from the first release of a pathogen to the actual human infection - Provides techniques on how to gather information, on how each microorganism moves through the environment, how to determine their survival rates on various media, and how people are exposed to the microorganism - Explains how QMRA can be used as a tool to measure the impact of interventions and identify the best policies and practices to protect public health and safety - Includes new information on genetic methods - Techniques use to develop risk models for drinking water, groundwater, recreational water, food and pathogens in the indoor environment
Relationship Between Microbes and Environment for Sustainable Ecosystem Services, Volume Three: Microbial Tools for Sustainable Ecosystem Services promotes advances in sustainable solutions, value-added products, and fundamental research in microbes and the environment. Topics include advanced and recent developments in the use of microbes for sustainable development. Volume Three includes concepts and applications of microbes in ecosystem services, with a focus on sustainable practices. The book will include case studies and utility of microbes on both geographical and production system-wide considerations. This book provides reference information ranging from the description of various microbial applications for the sustainability in different aspects of food, energy, environment industry and social development. This book will be helpful to environmental biotechnology scientists, industrial professionals and experts working in the field of microbiology.
This volume of Applied Mycology and Biotechnology completes the set
of two volumes dedicated to the coverage of recent developments on
the theme "Agriculture and Food Production." The first volume
provided overview on fungal physiology, metabolism, genetics and
biotechnology and highlighted their connection with particular
applications to food production. The second volume examines various
specific applications of mycology and fungal biotechnology to food
production and processing. In the second volume coverage on two
remaining areas of the theme, food crop production and applications
in the foods and beverages sector, is presented.
Most of the Earth's biosphere is characterized by low temperatures. Vast areas (>20%) of the soil ecosystem are permanently frozen or are unfrozen for only a few weeks in summer. Permafrost regions occur at high latitudes and also at high ele- tions; a significant part of the global permafrost area is represented by mountains. Permafrost soils are of global interest, since a significant increase in temperature is predicted for polar regions. Global warming will have a great impact on these soils, especially in northern regions, since they contain large amounts of organic carbon and act as carbon sinks, and a temperature increase will result in a release of carbon into the atmosphere. Additionally, the intensified release of the clima- relevant tracer gas methane represents a potential environmental harzard. Significant numbers of viable microorganisms, including bacteria, archaea, p- totrophic cyanobacteria and green algae, fungi and protozoa, are present in per- frost, and the characteristics of these microorganisms reflect the unique and extreme conditions of the permafrost environment. Remarkably, these microorg- isms have been reported to be metabolically active at subzero temperatures, even down to ?20 DegreesC.
"Corynebacterium glutamicum "was discovered in Japan in 1956 as a natural glutamate producer. Its microbial factory qualities, such as its physiological plasticity and robust catalytic functionalities, have since facilitated the development of efficient production processes for amino acids, nucleotides and vitamins. This monograph illustrates how the information gleaned from complete genome sequencing allows the rational engineering of the entire cellular metabolism and how systems biology permits the further optimization of "C. glutamicum" as a biocatalyst. Aspects of gene regulation, metabolic pathways, sugar uptake, protein secretion, cell division and biorefinery applications highlight the enormous biotechnological and biorefinery potential. "
Predatory Prokaryotes focuses on the ecology of predation at the microbial level. It aims to increase the awareness of the great possibilities that predation between microbes offer for studying and discussing basic ecological and general biological concepts. This volume contains chapters on the diversity, ecology and phylogeny of predatory prokaryotes, introducing models of predator prey interactions between microorganisms and presenting analyses of the impact of predation in microbial systems. Laboratory work with Bdellovibrio-and-like organisms (BALOs), the most studied predatory bacteria, is presented through accounts of the cultivation and the molecular techniques used for studying BALOs. A first comparative analysis of different BALO genomes is also provided. Further chapters discuss the chemotactic, regulatory and sensory circuits of these ubiquitous predatory bacteria. Finally, the unique biochemicals used as building blocks and new proteins found in BALO cell walls are reviewed."
In addition to research and discovery, yeast surface display technology has found applications in industrial processes such as biofuel production and environmental pollutant absorption and degradation. Yeast Surface Display: Methods, Protocols, and Applications guides readers through yeast surface antibody display library and antibody engineering, yeast surface display as a tool for protein engineering, yeast surface cDNA display library construction and applications, and yeast surface display in bioassay and industrial applications. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Concise and easy-to-use, Yeast Surface Display: Methods, Protocols, and Applications aims to help accelerate the work of protein chemists, antibody engineers, molecular and cell biologists, and industrial bioengineers.
Carbon Sequestration in Forest Ecosystems is a comprehensive book describing the basic processes of carbon dynamics in forest ecosystems, their contribution to carbon sequestration and implications for mitigating abrupt climate change. This book provides the information on processes, factors and causes influencing carbon sequestration in forest ecosystems. Drawing upon most up-to-date references, this book summarizes the current understanding of carbon sequestration processes in forest ecosystems while identifying knowledge gaps for future research, Thus, this book is a valuable knowledge source for students, scientists, forest managers and policy makers.
Soil microorganisms play a major role in the degradation and recycling of organic material. Microbes are involved in the food web and strongly contribute to soil fertility. In the past, attention was mainly directed towards free-living or particle-bound microorganisms, while the role of intestinal microbes of soil animals has been neglected. For the first time, "Intestinal Microorganisms of Termites and Other Invertebrates" focuses on the microbes in gut systems of soil animals. It starts with a profound overview of the biology of soil invertebrates. A major part deals with the gut microbiota of termites, the best investigated gut system of invertebrates. Termites are important soil processors in tropical and subtropical regions. Insight is given into the intestinal microbiota of further relevant primary litter decomposers, such as earthworms, springtails, millipeds, and woodlice. Novel techniques for studying intestinal microbes complete the volume.
"Wastewater Microbiology" focuses on microbial contaminants found in wastewater, methods of detection for these contaminants, and methods of cleansing water of microbial contamination. This classic reference has now been updated to focus more exclusively on issues particular to wastewater, with new information on fecal contamination and new molecular methods. The book features new methods to determine cell viability/activity in environmental samples; a new section on bacterial spores as indicators; new information covering disinfection byproducts, UV disinfection, and photoreactivation; and much more. A PowerPoint of figures from the book is available at ftp: //ftp.wiley.com/public/sci_tech_med/wastewater_microbiology.
This book describes cutting-edge science and technology of the characterization, breeding, and development of yeasts and fungi used worldwide in fermentation industries such as alcohol beverage brewing, bread making, and bioethanol production. The book also covers numerous topics and important areas the previous literature has missed, ranging widely from molecular mechanisms to biotechnological applications related to stress response/tolerance of yeasts and fungi. During fermentation processes, cells of yeast and fungus, mostly Saccharomyces and Aspergillus oryzae spp., respectively, are exposed to a variety of fermentation "stresses". Such stresses lead to growth inhibition or cell death. Under severe stress conditions, their fermentation ability and enzyme productivity are rather limited. Therefore, in terms of industrial application, stress tolerance is the key characteristic for yeast and fungal cells. The first part of this book provides stress response/tolerance mechanisms of yeast used for the production of sake, beer, wine, bread, and bioethanol. The second part covers stress response/tolerance mechanisms of fungi during environmental changes and biological processes of industrial fermentation. Readers benefit nicely from the novel understandings and methodologies of these industrial microbes. The book is suitable for both academic scientists and graduate-level students specialized in applied microbiology and biochemistry and biotechnology and for industrial researchers and engineers who are involved in fermentation-based technologies. The fundamental studies described in this book can be applied to the breeding of useful microbes (yeasts, fungi), the production of valuable compounds (ethanol, CO2, amino acids, organic acids, and enzymes) and the development of promising processes to solve environmental issues (bioethanol, biorefinery). |
You may like...
Using Disruptive Methodologies and…
Irene Rivera-Trigueros, Abigail Lopez-Alcarria, …
Hardcover
R7,006
Discovery Miles 70 060
Formal Languages for Computer Simulation…
Pau Fonseca I. Casas
Hardcover
R4,207
Discovery Miles 42 070
Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka
Hardcover
R3,950
Discovery Miles 39 500
Usability Testing for Survey Research
Emily Geisen, Jennifer Romano Bergstrom
Paperback
Cyber-Physical Systems - Foundations…
Houbing Song, Danda B. Rawat, …
Paperback
|