![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
The biennial TNF-family conferences have been held over the past 20 years, from the time that TNF was cloned. These meetings have followed the enormous progress in this field. Much is now known about the members of the TNF ligand and receptor families, their signaling proteins, mechanisms of action and cellular functions. This volume is the proceedings of the 12th TNF International Conference, held in April 2009. This conference focuses on the physiological, pathophysiological, and medical significance of these important regulators. Sessions at the meeting specifically address their involvement in immunity, development, apoptosis, autoimmunity, cancer, and infection, the normal function and pathology of the neuronal system, as well as major unresolved questions about their mechanisms of action.
Human-Gut Microbiome: Establishment and Interactions gives an overview of microbiome establishments in humans and basic technologies used to decipher the structure and function of gut microbiome. Other sections focus on the application of microbiomics in different disease manifestations, such as obesity, diabetes, and more. The book provides the basics, as well as mechanistic knowledge underpinning the structural and functional understanding of the microbiome. With the advancement in omics technologies, as well as the development of bioinformatic tools, much research has been undertaken to decipher the microbiomes of different hosts. This research is generating valuable insights into micro-ecological niches and their impact on humans, hence this new release covers these new insights. The book will be a valuable resource for scientists, researchers, postgraduate and graduate students who are interested in understanding the impact and importance of the omics approach to humans and their microbiomes.
Proceedings of a Workshop, ICARDA, Syria, April 14-17, 1986.
Neurovirology, the study of viral infection of the ner vous system, has evolved at the interface of three of the most rapidly unfolding fields of investigation-neurobiology, vi rology, and immunology. In all three, increasing knowledge about the molecular structure of surface receptors, how in tracellular messages are transmitted, and how diversity is regulated genetically is provided, along with the techniques of molecular biology. This promises to give us knowledge not only about the process of infection and the complex host and viral determinants of neuroinvasiveness and neurovirulence, but eventually it will provide the background from which to engineer vaccines and to devise novel therapeutic agents. Animal virology and molecular biology developed quite independently from different origins. Animal virology was originally the province of the pathologists, and by clinical observation and histological preparations, they tried to ex plain the incubation period, the pathways of virus spread, and the mechanisms of disease. Molecular virology grew out of biochemistry, particularly through studies of bacterio phage, with emphasis on the physical and chemical structure of viruses and the sequences of biochemical events during the replicative cycle in cells."
This book complies latest advancement in the field of environmental biotechnology. It focuses on topics that comprises industrial, environment and agricultural related issues to microbiological studies and exhibits correlation between biological world and dependence of humans on it. It is designed into three sections covering the role of environmental biotechnology in industry, environmental remediation, and agriculture. Ranging from micro-scale studies to macro, it covers up a huge domain of environmental biotechnology. Overall the book portrays the importance of modern biotechnology technologies in solving the problems in modern day life. The book is a ready reference for practicing students, researchers of biotechnology, environmental engineering, chemical engineering and other allied fields likewise.
This book covers recent advances and future trends in yeast synthetic biology, providing readers with an overview of computational and engineering tools, and giving insight on important applications. Yeasts are one of the most attractive microbial cell factories for the production of a wide range of valuable products, including pharmaceuticals, nutraceuticals, cosmetics, agrochemicals and biofuels. Synthetic biology tools have been developed to improve the metabolic engineering of yeasts in a faster and more reliable manner. Today, these tools are used to make synthetic pathways and rewiring metabolism even more efficient, producing products at high titer, rate, and yield. Split into two parts, the book opens with an introduction to rational metabolic pathway prediction and design using computational tools and their applications for yeast systems and synthetic biology. Then, it focuses on the construction and assembly of standardized biobricks for synthetic pathway engineering in yeasts, yeast cell engineering and whole cell yeast-based biosensors. The second part covers applications of synthetic biology to produce diverse and attractive products by some well-known yeasts. Given its interdisciplinary scope, the book offers a valuable asset for students, researchers and engineers working in biotechnology, applied microbiology, metabolic engineer ing and synthetic biology.
This detailed volume explores the field of bacterial virulence and the effort to understand how microbial interaction with a host results in the pathology of a specific disease. This collection of selected protocols includes advanced molecular biology and bioinformatics methods, cell culture and organoid models of infection, as well as in vivo infection models that are useful to study the interaction of pathogens with plants, insects, avian, and mammalian hosts. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and beneficial, Bacterial Virulence: Methods and Protocols serves as an ideal guide for researchers seeking to promote and further develop the exciting and continuously evolving field of bacterial virulence. Chapter 19 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book presents a comprehensive view on mycotoxins of agricultural as well as non-agricultural environments and their health effects in humans and animals. Mycotoxins have immunosuppressive effects; but some of them can cause cancers, mutagenicity, neurotoxicity, liver and kidney damage, birth defects, DNA damage and respiratory disorders. The problem of mycotoxins is long-lasting and their direct or indirect exposures to humans and animals must be further discussed. The first chapter will cover the historical perspective of mycotoxins along with timeline while the second one will provide overview including classification of mycotoxins and mycotoxicoses. The comprehensive information/ literature on traditional, emerging and mushroom mycotoxins will be given in chapters 3, 4 and 5 respectively. Chapter 6 will deal with mycotoxins co-occurrence poisoning whereas new and masked mycotoxins will be described in chapter 7. The important aspects of mycotoxin studies like extraction, characterization and analysis and management strategies will be summarized in 8 and 9 chapters. The last chapter of the book will cover the recent developments in toxicokinetic studies of mycotoxins. The book will have the most up-to-date information and recent discoveries to deliver accurate data and to illustrate essential points to a wide range of readers including mycologists, clinicians, agricultural scientists, chemists, veterinarians, environmentalists and food scientists.
This edited volume covers all aspects of the latest research in the field of soil formation and its functioning, soil diversity, soil proteomics, the impact of anthropogenic activities on the pedosphere, plant-microbe interactions in the pedosphere, and factors influencing the formation and functioning of the soils. In the pedosphere, all forms of soils possess a particular type of structure and different organic and mineral components. Thus, the pedosphere as a whole plays a significant role in providing unique habitats for a vast diversity of life forms, developing a link between geological and biological substances circulation in the terrestrial ecosystems. In the processes making available vital mineral elements to plants and supporting human health as various trace elements in the lithosphere are accessed by people through the formation of soils and such soils are utilized for food production. With the depth of information on different aspects of soil, this extensive volume is a valuable resource for the researchers in the area of soil science, agronomy, agriculture, scientists in academia, crop consultants, policymakers, government from diverse disciplines, and graduate and post-graduate students in the area of soil and environmental science.
The rapid urbanization and industrialization of developing countries across the globe have necessitated for substantial resource utilization and development in the areas of Healthcare, Environment, and Renewable energy. In this context ,this resourceful book serves as a definitive source of information for the recent developments in application of microbial enzymes in various sectors. It covers applications in fermentation processes and their products, extraction and utilisation of enzymes from various sources and their application in health and biomass conversion for production of value added products. Different chapters discuss various areas of bioprospecting in enzyme technology, and describe why these are the mainstays for industrial production of value added products. The rich compilation of the cutting-edge advances and applications of the modern industrial based techniques hold feasible solutions for a range of current issues in enzyme technology. This book will be of particular interest for scientists, academicians, technical resource persons, engineers and members of industry. Undergraduate and graduate students pursuing courses in the area of industrial biotechnology will find the information in the book valuable. General readers having interest towards biofuels, enzyme technology, fermented food and value added products, phytochemicals and phytopharmaceutical products will also find the book appealing. Readers will discover modern concepts of enzymatic bioprocess technology for production of therapeutics and industrial value added products.
This book examines the commercial role of various microbial polysaccharides and recent advances in their production. Offering an overview of the physiological role, biosynthetic pathways and regulatory mechanisms, it also explores the current challenges regarding bioprocessing for the production of polysaccharides.
This book is the second volume on this topic within the series. With unique properties, nanomaterials are rapidly finding novel applications in many fields such as food, medicine, agriculture and pollution. Such applications include to treat cancer, nanosensors to detect food contamination, nanomaterials for food packaging, nanoencapsulation to preserve nutraceuticals, and nanofertilisers for advanced agriculture. After an introductory chapter on property rights of nanomaterials, readers will discover the applications of nanotechnology in food, health, environment, ecotoxicology and agriculture.
This volume explores the latest techniques used to study Mycobacterium ulcerans, and more specifically M. ulcerans disease (Buruli ulcer). The chapters in this book are organized into three parts and cover methods for the detection of M. ulcerans and the analysis of host-pathogen interaction; the quantification and characterization of mycolactone, the macrolide toxin of M. ulcerans; and drug development against M. ulcerans. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Mycobacterium ulcerans: Methods and Protocols is a valuable resource that helps scientists advance their research on Buruli ulcer, which is still an under-researched field in infection biology.
This book provides a comprehensive account of past, present and future of the biomass based biorefineries. It is an all-inclusive and insightful compilation of recent advancements in the technology and methods used for conversion of biomass to bioenergy and other useful biochemicals. The book also focuses on the limitations of existing technologies and provides the future prospects, as well as discusses socio-economic impact of biomass based biorefineries. This book assists researchers in the area of lignocellulosic biorefineries and can be used by the students, scientist and academician as an advanced reference textbook.
This book provides up-to-date information on the state of the art in applications of biotechnological and microbiological tools for protecting the environment. Written by leading international experts, it discusses potential applications of biotechnological and microbiological techniques in solid waste management, wastewater treatment, agriculture, energy and environmental health. This second volume of book "Environmental Microbiology and Biotechnology," covers two main topics: bioenergy and environmental health, exploring the latest developments from around the globe regarding applications of biotechnology and microbiology for converting wastes into valuable products and at the same time reducing the environmental pollution resulting from disposal. Wherever possible it also includes real-world examples. Further, it offers advice on which procedures should be followed to achieve satisfactory results, and provides insights that will promote the transition to the sustainable utilization of various waste products.
This contributed volume compiles the latest developments in the field of microbial enzymology. It focuses on topics such as distribution of microbial enzymes in natural habitats, microbial enzymes in environmental sustainability, and environmental disturbances on microbial enzymes, which are organized into three parts, respectively. Ranging from micro-scale studies to macro, it covers a huge domain of microbial enzymes and their interplay between the components of the environment. Overall, the book portrays the importance of microbial enzyme technology and its role in solving the problems in modern-day life. The book is a ready reference for practicing students and researchers in environmental engineering, chemical engineering, agricultural engineering, and other allied fields.
The creation of plant-based foods is one of the most rapidly advancing areas in the modern food industry. Many consumers are adopting more plant-based foods in their diets because of concerns about global warming and its devastating impacts on the environment and biodiversity. In addition, consumers are adopting plant-based diets for ethical and health reasons. As a result, many food companies are developing plant-based analogs of animal-based foods like dairy, egg, meat, and seafood products. This is extremely challenging because of the complex structure and composition of these animal-based foods. Next-Generation Plant-based Foods: Design, Production and Properties presents the science and technology behind the design, production, and utilization of plant-based foods. Readers will find a review of ingredients, processing operations, nutrition, quality attributes, and specific plant-based food categories such as milk and dairy products, egg and egg products, meat and seafood products, providing the fundamental knowledge required to create the next generation of healthier and more sustainable plant-based food alternatives.
This book compiles the latest research on the multifarious roles of microbial enzymes, and provides an overview of microbial enzymes and biotechnologies. It discusses the use of microbial enzymes in innovative areas like nanomedicine and synthetic biotechnology, as well as the use of starch digesting enzymes and bioactive proteins as biotherapeutics, all of which have applications in modern drug discovery processes. The book also examines the concept of microbial biotransformation and protein engineering, and covers topics such as the immobilization of therapeutic enzymes, bioengineering of enzymes for bioactive compounds, the production of hydrolytic and oxidative enzymes from plant raw materials, and prebiotics and probiotics. Given its multidisciplinary scope, this book will appeal to researchers and industry experts in the fields of microbiology, biotechnology and molecular medicine.
This book provides a comprehensive overview of the current state of knowledge on plant-microbiome interactions and associations. It covers all major mechanistic approaches used to investigate microbes' impacts on plant growth promotion, disease control and health. The industrial manufacture of nitrogen currently accounts for roughly 2% of the world's total energy consumption. Microbial products are expected to reduce the need for costly fertilizers, as well as chemical pesticides and fungicides. While beneficial microorganisms are increasingly being used in agriculture, abiotic and biotic stresses such as heat, drought, cold, and salt can quickly kill or render them useless in the field. However, discovering new and better treatments is a lengthy process due to the considerable microbial diversity found in soils. Researchers have now proposed using biotechnological approaches to accelerate the process of microbial technology development. The fact that plant-associated microbes stimulate plant growth and development is well known, as the examples of rhizobia and mycorrhizal fungi show. The mechanisms by which these microorganisms maintain plant growth include the production of phytohormones, fixation of nitrogen, and the mobilization of phosphorus and minerals. The plant microbiome is also involved in pathogen suppression, and especially the root microbiome acts as a protective shield against soil-borne pathogens. A special feature of this book is its multidisciplinary approach, spanning from plant microbiology/biocontrol, fungal and bacterial endophytes, plant physiology, to biochemistry, proteomics and genomics. It is ideally suited for researchers and student of agri-biotechnology, soil biology and fungal biology.
Written by the world's leading scientists and spanningover 400 articles in three volumes, the "Encyclopedia of Food Microbiology, Second Edition" is a complete, highly structured guide to current knowledge in the field. Fully revised and updated, this encyclopedia reflects the key advances in the field sincethe first edition was published in 1999 The articles in this key work, heavily illustrated and fully revised since the first edition in 1999, highlight advances in areas such as genomics and food safety to bring users up-to-date on microorganisms in foods. Topics such as DNA sequencing and E. coli are particularly well covered. With lists of further reading to help users explore topics in
depth, this resource will enrich scientists at every level in
academia and industry, providing fundamental information as well as
explaining state-of-the-art scientific discoveries.
Soil is an important but often neglected element of the climate system. It is the second largest carbon store, or 'sink', after the oceans. Despite being a fundamental resource that supports all kinds of life on Earth, concerns related to soil are often not included as an important environmental issue. Climate changes put soil under pressure. The increasing concentration of carbon dioxide in our atmosphere may cause the microbes in the soil to work faster to break down organic matter, potentially releasing even more carbon dioxide. The soil moisture content is being constantly affected by rising temperatures and changes in precipitation patterns and future projections show that this may continue. This book presents current environmental issues and their remedies for soil which are mainly based on soil degradation, soil pollution and the effect of climate change on the soil. Adding xenobiotic chemicals or other alterations in the natural soil environment for agricultural, industrial or urban purposes result in a decline in the soil quality due to improper use or poor management, which is a serious environmental problem. The book is divided into five parts - soil science, soil physics, soil chemistry, soil biology and soil environment. The first part "Soil Science" serves as the introduction to the book and discusses some common topics such as soil formation, mineralogy, taxonomy, quality and analytical techniques. The second part "Soil Physics" is mainly concerned with the physical properties and processes of soil and their association with effects on air, water and temperature. Soil Chemistry, the third part, discusses the chemical reactions and processes between inorganic and organic components. The fourth part "Soil Biology" explains the biological properties and processes of the soil, with special concern to microbial diversity and its effect on the ecology. Lastly, the fifth part "Soil Environment" discusses the current environmental problems such as climate change and soil pollution, including processes to mitigate these issues through carbon sequestration, nutrient management and land management.
This book discusses soil and recycling management in the Anthropocene era. Nitrogen shortage is one of nature's most important productivity regulators, but since the advent of technical nitrogen fixation (TNF), biological nitrogen fixation (BNF) input has nearly doubled, particularly in grass and arable lands covering over 13 million km2 of the Earth's surface. This book explores how monoculture grass, arable lands and forests are often over fertilized with TNF, animal slurries, sewage sludge, or municipally produced composts, and as a result, flora and fauna that have adapted to a nitrogen shortage in the soil will have to adjust to a surplus; those that are unable to adapt will disappear.
This book focuses on the importance and roles of seed microbiomes in sustainable agriculture by exploring the diversity of microbes vectored on and within seeds of both cultivated and non-cultivated plants. It provides essential insights into how seeds can be adapted to enhance microbiome vectoring, how damaged seed microbiomes can be assembled again and how seed microbiomes can be conserved. Plant seeds carry not only embryos and nutrients to fuel early seedling growth, but also microbes that modulate development, soil nutrient acquisition, and defense against pathogens and other stressors. Many of these microbes (bacteria and fungi) become endophytic, entering into the tissues of plants, and typically exist within plants without inducing negative effects. Although they have been reported in all plants examined to date, the extent to which plants rely on seed vectored microbiomes to enhance seedling competitiveness and survival is largely unappreciated. How microbes function to increase the fitness of seedlings is also little understood. The book is a unique and important resource for researchers and students in microbial ecology and biotechnology. Further, it appeals to applied academic and industrial agriculturists interested in increasing crop health and yield. |
You may like...
The Insect, the Farmer, the Teacher, the…
Stephen Alfred Forbes
Paperback
R294
Discovery Miles 2 940
From Ivory Towers To Ebony Towers…
Oluwaseun Tella, Shireen Motala
Paperback
|