![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
Antibiotics: Therapeutic Spectrum and Limitations provides up-to-date information on managing microbial infections, the development and types of antibiotics, the rationale for utilizing antibiotics, toxicity considerations, and the control of antibiotic resistance in one single resource. This book also aims to provide comprehensive insights and current trends on antibiotic therapies to treat microbial infections, their mechanisms of action, and the role of modern drug delivery in improving their efficacy. Written by leading experts from around the globe, the chapters in the book covers important aspects of microbial infections including hospital acquired infections and community acquired infections and adult sepsis, examines the various types of antibiotics with different mechanisms and therapeutic uses, the global challenge of antibiotic resistance, and clinical trials, regulatory considerations, and market overview of antibiotics. Furthermore, the chapters include updated literature reviews of the relevant key topics, high-quality illustrations, chemical structures, flowcharts, and well-organized tables, all of which enable better understanding by the readers.
Integrated Analytical Approaches for Pesticide Management provides proven laboratory practices/examples and methods necessary to control pesticides in food and water in various environments. The book presents insights into good laboratory practices and examples of methods used in individual specialist laboratories, thus enabling stakeholders in the agri-food industry to appreciate the importance of proven, reliable data and the associated quality assurance approaches for end product testing for toxic levels of contaminant residues in food. The book is written in a rigorous, but simple, way to make sure that a broad range of readers can appreciate its technical content. The book's practical nature and generic guidelines distinguish it from others in the marketplace.
The new series "Microbiology Monographs" begins with two volumes on intracellular components in prokaryotes. In this first volume, "Inclusions in Prokaryotes," the components, labeled inclusions, are defined as discrete bodies resulting from synthesis of a metabolic product. Research on the biosynthesis and reutilization of the accumulated materials is still in progress, and interest in the inclusions is growing. This comprehensive volume provides historical background and comprehensive reviews of eight well-known prokaryotic inclusions.
This book covers broad areas in the conservation of microorganisms. It addresses the short, medium and long-term preservation of agriculturally important microorganisms, as well as culture collections and their roles. The respective chapters address topics such as conventional approaches to bacterial, fungal and algal preservation, as well as methods and strategies for preserving recalcitrant microorganisms. Readers will also find the latest insights into the preservation of vesicular-arbuscular (VA) fungi and ecology, diversity and conservation of endophytes, and entamopathogenic fungi. Microbes of animal and dairy origin, their preservation and biosafety issues are also explored. Microorganisms are the silent and unseen majority of life on Earth, and are characterized by a high degree of genetic and metabolic diversity. It is well documented that no branch of science or society is unaffected by microbial interventions. Researchers have documented microorganisms from such extreme and unique environments as deserts and hydrothermal vents, and with specific traits that are currently being exploited in agriculture, industry, medicine and biotechnological applications. Such great potential can only be found in microorganisms. The aim of this book - the first entirely devoted to the conservation of microorganisms, and to regulatory mechanisms for access and benefits sharing as per Biological Diversity (BD) Act 2002 - is to promote awareness of our world's microbial wealth, and to introduce readers to strategies and methodologies for the conservation of microorganisms, which could ultimately save human life on Earth.
The Use of Mass Spectrometry Technology (MALDI-TOF) in Clinical Microbiology presents the state-of the-art for MALDI-TOF mass spectrometry. It is a key reference defining how MALDI-TOF mass spectrometry is used in clinical settings as a diagnostic tool of microbial identification and characterization that is based on the detection of a mass of molecules. The book provides updated applications of MALDI-TOF techniques in clinical microbiology, presenting the latest information available on a technology that is now used for rapid microbial identification at relatively low cost, thus offering an alternative to conventional laboratory diagnosis and proteomic identification systems. Although the main use of the technology has, until now, been identification or typing of bacteria from a positive culture, applications in the field of virology, mycology, microbacteriology and resistances are opening up new opportunities.
This book focuses on waterborne pathogens and significant diseases occurring along major rivers around the globe, including key examples like the Amazonas, Mekong River and Nile. Written by leading international experts, it offers unique insights into local riverine infection risks in times of global warming, and addressing these through advances in diagnosis, health management and the development of simple but effective control measures. It also sheds light on why former societies collapsed due to transmitted diseases during periods of climate change, droughts and floods, to help establish effective preventive measures for the future. The book appeals to a wide readership, from scientists in the field of parasitology, infectious diseases and epidemiology, to healthcare managers and general readers with an interest in pathogen spread along the largest rivers on earth. It particularly highlights past and current control mechanisms in times of global warming and assesses potential future health hazards.
This book provides a comprehensive review of recent innovations in food science that are being used to tackle the challenges of food safety, nutritional security and sustainability. With a major focus on developing nations, like India, the book is divided into four main sections. The first section provides an overview of the food industry, while the second explores food safety in various segments, with an interesting account of street food safety - an important, yet often neglected aspect for safety parameters. The third section, on nutritional security and sustainability, explores various ways of maximizing nutrition and optimizing waste management in the food industry. The book closes with a section on emerging technologies and innovations, which introduces readers to some of the latest technologies in the food industry, including advances in food processing, packaging, nanotechnology, etc. The topics have been divided into 25 different chapters, which offer a diverse blend of perspectives on innovations in the developing world. Ideally suited for students and researchers in the food sciences, the book is also an interesting read for industry experts in Food Science and Technology.
This volume covers a wide range of up-to-date technologies that have been successfully applied to study the chemosensing behavior of the traditional model species, such as Escherichia coli and Salmonella typhimurium, while being also applicable to a wide spectrum of other species. Beginning with an introduction, the sections of the book explore methods for studying bacterial chemotaxis at the population and whole-cell levels, in vivo analysis of receptor function, cryo-EM methods for studying chemoreceptor structure, as well as intracellular movement of chemosensory proteins, high-throughput methods to screen for novel chemoeffectors, and chemical tools and computer simulations for analyzing chemotaxis. Written for the highly successful Methods in Molecular Biology series, chapters include brief introductions to their topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips for troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacterial Chemosensing: Methods and Protocols provides an extensive repertoire of approaches that can be extended to understanding chemotaxis, in particular, and chemosensing, in general, in the context of the enormously varied lifestyles adopted in the larger bacterial world.
This book explores microbial lifestyles, biochemical adaptations, and trophic interactions occurring in extreme environments. By summarizing the latest findings in the field it provides a valuable reference for future studies. Spark ideas for biotechnological and commercial exploitation of microbiomes at the extremes of life are presented. Chapters on viruses complement this highly informative book. In a vertical journey through the microbial biosphere it covers aspects of cold environments, hot environments, extreme saline environments, and extreme pressure environments, and more. From the deep sea, through polar deserts, up to the clouds in the air - the diversity of microbial life in all habitats is described, explored, and comprehensively reviewed. Possible biotechnical applications are discussed. This book aims to provide a useful reference for those who want to start a research program in extreme microbiology and, hopefully, inspire new research directions.
This edited book is a comprehensive collection of chapters on various clean energy technology such as solar energy, waste biomass as energy, hydro-electricity generation, biodiesel production from biomass and strategies to cater the demand of clean renewable energy. Clean energy technologies also enhance economic growth by increasing the supply of energy demand and tackling environmental challenges and their impacts due to the use of other conventional sources of energy. The conventional/non-conventional energy production methods are efficient but it has adverse effects on environment and human health. As environmental concerns are not avoidable therefore the necessity of clean energy production comes in to the picture. The clean energy can be produced by different wastes which are caused for the environmental pollution. This book covers various aspects of new and renewable clean energy production technology and its utilization in different fields. This is a useful reading material for students and researchers involved in clean energy study.
Pet-to-Man Travelling Staphylococci: A World in Progress explores Staphylococci, a dangerous pathogen that affects both humans and animals with a wide range of infection states. This bacteria can spread rapidly as a commensal organism in both humans and pets, and is an agent of disease. Staphylococci are potentially highly virulent pathogens which require urgent medical attention. In addition, Staphylococci remain a threat within hospital environments, where they can quickly spread across a patient population. This book explores the organisms' resistance to many compounds used to treat them, treatment failure and multidrug resistant staphylococci, amongst other related topics.
A compilation of up to date reviews of topics in biotechnology and medical field.
This extensive and singular work focuses on current applications of nanotechnology in food systems. The functionality and applicability of food-related nanotechnology is covered in depth, presenting a view on the food processing, packaging,storage and safety assessment of nanotechnology in the food industry. Multiple nanostructures are covered, each with their specific ingredient choice, production strategy, functionality and application in food engineering. Individual chapters focus on current processing methods and applications of nanotechnology in foods. Nano-food Engineering Volume One brings together panels of highly accomplished experts in the field of composites, nanotechnology and chemical engineering and food technology. The work encompasses basic studies and addresses novel issues, covering all engineering aspects, opportunities and challenges and solutions of nano-foods.
This book reviews applications of nanomaterial and nanodevices in the food industry. It also discusses the advanced bioanalytical techniques, including Enzyme-Linked Immunosorbent Assay (ELISA), immunoanalytical techniques, and monoclonal antibody-based immunological techniques for detecting food adulterations and allergens. It comprehensively covers electrode modification and nano-engineered fabrication of biosensors to enhance their functionalities for utilization in food industries. The book highlights the utilization of nanobiosensors for food safety and quality analysis, such as detection of toxin, food-borne pathogen, allergen, evaluation of toxicity etc. Further, it also summarizes the recent advances in nanodevices such as nano-systems, nano-emulsions, nanopesticides, and nanocapsules and their applications in the food industry. Lastly, it covers nanomaterial-based sensors for drug analysis in diverse matrices. It serves as an invaluable source of information for professionals, researchers, academicians, and students related to food science and technology.
This book presents an in depth study of different aspects of pesticide use in food production. The text covers the sources of pesticide residues in foods, relevant health and environmental concerns, degradation of pesticides after their use, and available laws and regulations to regulate pesticide use. In addition, different pesticide management techniques, such as: reduction of pesticide residues in grains and foods, alternatives to conventional pesticides, and prospects of organic farming are also covered. Pesticide Residue in Foods: Sources, Management, and Control aims to raise awareness of the proper use of these chemicals in order to lower residue in foods and reduce risk for consumers.
Translational medicine addresses the gap between research and the clinical application of new discoveries. To efficiently deliver new drugs to care centers, a preclinical evaluation, both in vitro and in vivo, is required to ensure that the most active and least toxic compounds are selected as well as to predict clinical outcome. Antimicrobial nanomedicines have been shown to have higher specificity in their therapeutic targets and the ability to serve as adjuvants, increasing the effectiveness of pre-existing immune compounds. The design and development of new standardized protocols for evaluating antimicrobial nanomedicines is needed for both the industry and clinical laboratory. These protocols must aim to evaluate laboratory activity and present models of pharmacokinetic-pharmacodynamic and toxicokinetic behavior that predict absorption and distribution. Likewise, these protocols must follow a theranostics approach, be able to detect promising formulations, diagnose the infectious disease, and determine the correct treatment to implement a personalized therapeutic behavior. Given the possibilities that nanotechnology offers, not updating to new screening platforms is inadequate as it prevents the correct application of discoveries, increasing the effect of the valley of death between innovations and their use. This book is structured to discuss the fundamentals taken into account for the design of robust, reproducible and automatable evaluation platforms. These vital platforms should enable the discovery of new medicines with which to face antimicrobial resistance (RAM), one of the great problems of our time.
This book reviews the current concepts in biofilm formation and its implications in human health and disease. The initial chapters introduce the mechanisms of biofilm formation and its composition. Subsequently, the chapters discuss the role of biofilm in acute and chronic infections. It also explores the pivotal role of both innate and adaptive immunity on the course of biofilm infection. In addition, the book elucidates the bacterial biofilm formation on implantable devices and the current approaches to its treatment and prevention. It analyzes the possible relationship between antimicrobial resistance and biofilm formation. Finally, the book also summarizes the current state-of-the-art therapeutic approaches for preventing and treating biofilms. This book is a useful resource for researchers in the field of microbiology, clinical microbiology, and also medical practitioners.
Cell surface small molecules and macromolecules, such as members of cholesterol family (including steroid hormones), the glycolipid family (sphingolipids), the glycoprotein family (both N-linked and O-linked), and a vast array of other receptors have been shown to be involved in normal and abnormal cellular processes. The 11th International Symposium on Cell Surface Macromolecules, held in Mohali, India, in February 2017 provided a comprehensive update on the major advances in this area. Presenting selected contributions from this meeting, this book comprises 24 chapters, which provide in-depth analyses of data on the role of cell surface macromolecules in cellular function and their alterations associated with pathological conditions. It includes comprehensive research papers and critical overviews of the functional role of cell surface molecules, discussing topics such as biochemical, biophysical, and cell biological approaches to study cell membrane molecules, and metabolism of glycoconjugates.
This book highlights recent advances in the field of plant-biotic interactions and explores current serious issues in the crop production industry. It is intended to attract more attention to these important, but often overlooked areas, and to stimulate new ideas for future research. Plants are constantly under attack by pathogens, pests, and parasites, which can significantly impact worldwide food production and human health. While pathogens and pests attack and interconnect with their hosts in a variety of ways, plants have developed sophisticated immune systems to fight infections. In the field of plant-biotic interactions, most of the studies to date have focused on the function and signaling pathways of plant disease resistance proteins and pattern recognition receptors, as well as pathogen effector proteins. In contrast, this book presents new and emerging research areas, and introduces students, researchers, academics, and policy advisors to the latest trends in e.g. microbial technology, environmental microbiology, agricultural science, the health sciences, biological sciences and other related disciplines.
This book discusses various renewable energy resources and technologies. Topics covered include recent advances in photobioreactor design; microalgal biomass harvesting, drying, and processing; and technological advances and optimised production systems as prerequisites for achieving a positive energy balance. It highlights alternative resources that can be used to replace fossil fuels, such as algal biofuels, biodiesel, bioethanol, and biohydrogen. Further, it reviews microbial technologies, discusses an immobilization method, and highlights the efficiency of enzymes as a key factor in biofuel production. In closing, the book outlines future research directions to increase oil yields in microalgae, which could create new opportunities for lipid-based biofuels, and provides an outlook on the future of global biofuel production. Given its scope, the book will appeal to all researchers and engineers working in the renewable energy sector.
This volume presents a comprehensive overview of the latest developments in symbiosis research. It covers molecular, organellar, cellular, immunologic, genetic and evolutionary aspects of symbiotic interactions in humans and other model systems. The book also highlights new approaches to interdisciplinary research and therapeutic applications. Symbiosis refers to any mutually beneficial interaction between different organisms. The symbiotic origin of cellular organelles and the exchange of genetic material between hosts and their bacterial and viral symbionts have helped shaped the current diversity of life. Recently, symbiosis has gained a new level of recognition, due to the realization that all organisms function as a holobiome and that any kind of interference with the hosts influences their symbionts and vice versa, and can have profound consequences for the survival of both. For example, in humans, the microbiome, i.e., the entirety of all the microorganisms living in association with the intestines, oral cavity, urogenital system and skin, is partially inherited during pregnancy and influences the maturation and functioning of the human immune system, protects against pathogens and regulates metabolism. Symbionts also regulate cancer development, wound healing, tissue regeneration and stem cell function. The medical applications of this new realization are vast and largely uncharted. The composition and robustness of human symbionts could make them a valuable diagnostic tool for predicting impending diseases, and the manipulation of symbionts could yield new strategies for the treatment of incurable diseases.
Diet, Microbiome and Health, Volume 11, in the Handbook of Food Bioengineering series, presents the most up-to-date research to help scientists, researchers and students in the field of food engineering understand the different microbial species we have in our guts, why they are important to human development, immunity and health, and how to use that understanding to further promote research to create healthy food products. In addition, the book provides studies that clearly demonstrate how dietary preferences and social behavior significantly impact the diversity of microbial species in the gut and their numeric values, which may balance health and disease.
Recent changes in the pattern of agricultural practices from use of hazardous pesticides to natural (organic) cultivation has brought into focus the use of agriculturally important microorganisms for carrying out analogous functions. The reputation of plant growth promoting rhizomicroorganisms (PGPRs) is due to their antagonistic mechanisms against most of the fungal and bacterial phytopathogens. The biocontrol potential of agriculturally important microorganisms is mostly attributed to their bioactive secondary metabolites. However, low shelf life of many potential agriculturally important microorganisms impairs their use in agriculture and adoption by farmers. The focal theme of this book is to highlight the potential of employing biosynthesized secondary metabolites (SMs) from agriculturally important microorganisms for management of notorious phytopathogens, as a substitute of the currently available whole organism formulations and also as alternatives to hazardous synthetic pesticides. Accordingly, we have incorporated a comprehensive rundown of sections which particularly examine the SMs synthesized, secreted and induced by various agriculturally important microorganisms and their applications in agriculture. Section 1 includes discussion on biosynthesized antimicrobial secondary metabolites from fungal biocontrol agents. This section will cover the various issues such as development of formulation of secondary metabolites, genomic basis of metabolic diversity, metabolomic profiling of fungal biocontrol agents, novel classes of antimicrobial peptides. The section 1 will also cover the role of these secondary metabolites in antagonist-host interaction and application of biosynthesized antimicrobial secondary metabolites for management of plant diseases. Section 2 will discuss the biosynthesized secondary metabolites from bacterial PGPRs, strain dependent effects on plant metabolome profile, bio-prospecting various isolates of bacterial PGPRs for potential secondary metabolites and non-target effects of PGPR on microbial community structure and functions. Section 3 encompasses synthesis of antimicrobial secondary metabolites from beneficial endophytes, bio-prospecting medicinal and aromatic hosts and effect of endophytic SMs on plants under biotic and biotic stress conditions.
This book describes a simplified approach to the modelling and process design of a fixed bed hybrid bioreactor for wastewater treatment. In this work a simplified model for hybrid bioreactor is developed to determine output parameters like exiting substrate concentration in bulk liquid, average substrate flux in the biofilm, effective and total biofilm thickness. The model is based on mass balance of both carbonaceous substrate and biomass under suspended and attached growth simultaneously along with substrate mass transport into the biofilm. The proposed model has also been validated with the results obtained from experimental study with municipal wastewater considering as a low strength wastewater with no inhibition. There is a flexibility of the proposed model making it a versatile one to find out the exiting substrate concentration both in hybrid bioreactor as well as in a completely mixed biofilm reactor (CMBR). The book caters to academics and practitioners working in the field of advanced wastewater treatment. |
You may like...
Evolution Equations of Hyperbolic and…
Michael Ruzhansky, Mitsuru Sugimoto, …
Hardcover
R1,447
Discovery Miles 14 470
Computational Complexity and Feasibility…
V. Kreinovich, A.V. Lakeyev, …
Hardcover
R5,398
Discovery Miles 53 980
Highlighting the Importance of Big Data…
Mohammad Moshirpour, Behrouz Far, …
Hardcover
R2,946
Discovery Miles 29 460
The Theory of Info-Statics: Conceptual…
Kofi Kissi Dompere
Hardcover
Numerical Analysis
Annette M Burden, Richard Burden, …
Hardcover
|