![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > General
Translational medicine addresses the gap between research and the clinical application of new discoveries. To efficiently deliver new drugs to care centers, a preclinical evaluation, both in vitro and in vivo, is required to ensure that the most active and least toxic compounds are selected as well as to predict clinical outcome. Antimicrobial nanomedicines have been shown to have higher specificity in their therapeutic targets and the ability to serve as adjuvants, increasing the effectiveness of pre-existing immune compounds. The design and development of new standardized protocols for evaluating antimicrobial nanomedicines is needed for both the industry and clinical laboratory. These protocols must aim to evaluate laboratory activity and present models of pharmacokinetic-pharmacodynamic and toxicokinetic behavior that predict absorption and distribution. Likewise, these protocols must follow a theranostics approach, be able to detect promising formulations, diagnose the infectious disease, and determine the correct treatment to implement a personalized therapeutic behavior. Given the possibilities that nanotechnology offers, not updating to new screening platforms is inadequate as it prevents the correct application of discoveries, increasing the effect of the valley of death between innovations and their use. This book is structured to discuss the fundamentals taken into account for the design of robust, reproducible and automatable evaluation platforms. These vital platforms should enable the discovery of new medicines with which to face antimicrobial resistance (RAM), one of the great problems of our time.
This book reviews the current concepts in biofilm formation and its implications in human health and disease. The initial chapters introduce the mechanisms of biofilm formation and its composition. Subsequently, the chapters discuss the role of biofilm in acute and chronic infections. It also explores the pivotal role of both innate and adaptive immunity on the course of biofilm infection. In addition, the book elucidates the bacterial biofilm formation on implantable devices and the current approaches to its treatment and prevention. It analyzes the possible relationship between antimicrobial resistance and biofilm formation. Finally, the book also summarizes the current state-of-the-art therapeutic approaches for preventing and treating biofilms. This book is a useful resource for researchers in the field of microbiology, clinical microbiology, and also medical practitioners.
Cell surface small molecules and macromolecules, such as members of cholesterol family (including steroid hormones), the glycolipid family (sphingolipids), the glycoprotein family (both N-linked and O-linked), and a vast array of other receptors have been shown to be involved in normal and abnormal cellular processes. The 11th International Symposium on Cell Surface Macromolecules, held in Mohali, India, in February 2017 provided a comprehensive update on the major advances in this area. Presenting selected contributions from this meeting, this book comprises 24 chapters, which provide in-depth analyses of data on the role of cell surface macromolecules in cellular function and their alterations associated with pathological conditions. It includes comprehensive research papers and critical overviews of the functional role of cell surface molecules, discussing topics such as biochemical, biophysical, and cell biological approaches to study cell membrane molecules, and metabolism of glycoconjugates.
This book highlights recent advances in the field of plant-biotic interactions and explores current serious issues in the crop production industry. It is intended to attract more attention to these important, but often overlooked areas, and to stimulate new ideas for future research. Plants are constantly under attack by pathogens, pests, and parasites, which can significantly impact worldwide food production and human health. While pathogens and pests attack and interconnect with their hosts in a variety of ways, plants have developed sophisticated immune systems to fight infections. In the field of plant-biotic interactions, most of the studies to date have focused on the function and signaling pathways of plant disease resistance proteins and pattern recognition receptors, as well as pathogen effector proteins. In contrast, this book presents new and emerging research areas, and introduces students, researchers, academics, and policy advisors to the latest trends in e.g. microbial technology, environmental microbiology, agricultural science, the health sciences, biological sciences and other related disciplines.
The goal of the International Immune-Mediated Diseases: From Theory to Therapy (IMD) Congress is to bring the best world immunologists and clinicians to Moscow to participate in plenary sessions, symposia and educational workshops designed to expose basic and clinical immunologist as well as practicing clinicians to the newest developments in the field. First IMD Congress consisted of 8 Plenary Sessions, 40 Symposia and 25 Workshops. The meeting attracted almost 2000 participants and speakers from 15 countries. After this great success of the First IMD Congress, the Organizing Committee decided to convene the meeting every other year and the Second International IMD Congress was planned for September 2007. This volume includes contributions from the speakers of the Second IMD Congress (September 10-15, 2007; Moscow, Russia) who are eager to share some of the academic and clinical enthusiasm that defines the IMD meetings.
This book discusses various renewable energy resources and technologies. Topics covered include recent advances in photobioreactor design; microalgal biomass harvesting, drying, and processing; and technological advances and optimised production systems as prerequisites for achieving a positive energy balance. It highlights alternative resources that can be used to replace fossil fuels, such as algal biofuels, biodiesel, bioethanol, and biohydrogen. Further, it reviews microbial technologies, discusses an immobilization method, and highlights the efficiency of enzymes as a key factor in biofuel production. In closing, the book outlines future research directions to increase oil yields in microalgae, which could create new opportunities for lipid-based biofuels, and provides an outlook on the future of global biofuel production. Given its scope, the book will appeal to all researchers and engineers working in the renewable energy sector.
This volume presents a comprehensive overview of the latest developments in symbiosis research. It covers molecular, organellar, cellular, immunologic, genetic and evolutionary aspects of symbiotic interactions in humans and other model systems. The book also highlights new approaches to interdisciplinary research and therapeutic applications. Symbiosis refers to any mutually beneficial interaction between different organisms. The symbiotic origin of cellular organelles and the exchange of genetic material between hosts and their bacterial and viral symbionts have helped shaped the current diversity of life. Recently, symbiosis has gained a new level of recognition, due to the realization that all organisms function as a holobiome and that any kind of interference with the hosts influences their symbionts and vice versa, and can have profound consequences for the survival of both. For example, in humans, the microbiome, i.e., the entirety of all the microorganisms living in association with the intestines, oral cavity, urogenital system and skin, is partially inherited during pregnancy and influences the maturation and functioning of the human immune system, protects against pathogens and regulates metabolism. Symbionts also regulate cancer development, wound healing, tissue regeneration and stem cell function. The medical applications of this new realization are vast and largely uncharted. The composition and robustness of human symbionts could make them a valuable diagnostic tool for predicting impending diseases, and the manipulation of symbionts could yield new strategies for the treatment of incurable diseases.
Recent changes in the pattern of agricultural practices from use of hazardous pesticides to natural (organic) cultivation has brought into focus the use of agriculturally important microorganisms for carrying out analogous functions. The reputation of plant growth promoting rhizomicroorganisms (PGPRs) is due to their antagonistic mechanisms against most of the fungal and bacterial phytopathogens. The biocontrol potential of agriculturally important microorganisms is mostly attributed to their bioactive secondary metabolites. However, low shelf life of many potential agriculturally important microorganisms impairs their use in agriculture and adoption by farmers. The focal theme of this book is to highlight the potential of employing biosynthesized secondary metabolites (SMs) from agriculturally important microorganisms for management of notorious phytopathogens, as a substitute of the currently available whole organism formulations and also as alternatives to hazardous synthetic pesticides. Accordingly, we have incorporated a comprehensive rundown of sections which particularly examine the SMs synthesized, secreted and induced by various agriculturally important microorganisms and their applications in agriculture. Section 1 includes discussion on biosynthesized antimicrobial secondary metabolites from fungal biocontrol agents. This section will cover the various issues such as development of formulation of secondary metabolites, genomic basis of metabolic diversity, metabolomic profiling of fungal biocontrol agents, novel classes of antimicrobial peptides. The section 1 will also cover the role of these secondary metabolites in antagonist-host interaction and application of biosynthesized antimicrobial secondary metabolites for management of plant diseases. Section 2 will discuss the biosynthesized secondary metabolites from bacterial PGPRs, strain dependent effects on plant metabolome profile, bio-prospecting various isolates of bacterial PGPRs for potential secondary metabolites and non-target effects of PGPR on microbial community structure and functions. Section 3 encompasses synthesis of antimicrobial secondary metabolites from beneficial endophytes, bio-prospecting medicinal and aromatic hosts and effect of endophytic SMs on plants under biotic and biotic stress conditions.
This book describes a simplified approach to the modelling and process design of a fixed bed hybrid bioreactor for wastewater treatment. In this work a simplified model for hybrid bioreactor is developed to determine output parameters like exiting substrate concentration in bulk liquid, average substrate flux in the biofilm, effective and total biofilm thickness. The model is based on mass balance of both carbonaceous substrate and biomass under suspended and attached growth simultaneously along with substrate mass transport into the biofilm. The proposed model has also been validated with the results obtained from experimental study with municipal wastewater considering as a low strength wastewater with no inhibition. There is a flexibility of the proposed model making it a versatile one to find out the exiting substrate concentration both in hybrid bioreactor as well as in a completely mixed biofilm reactor (CMBR). The book caters to academics and practitioners working in the field of advanced wastewater treatment.
This detailed book collects standard techniques and cutting-edge methods that are frequently used by the research community studying the fungus Trichoderma reesei. Beginning with overviews of its evolution, its use in the production of industrially-relevant enzymes, and synthetic biology applications, the volume continues with methods covering topics from transformation techniques and gene editing to downstream-analytical applications and -omics analyses and the corresponding bioinformatics approaches. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Trichoderma reesei: Methods and Protocols serves as an ideal guide for a wide range of audiences, from students who want to familiarize themselves with basic research protocols to experienced scientists who are planning to establish a new method in their laboratories, working with this dynamic fungus.
Vents and seeps are the epitome of life in extreme environments, but there is much more to these systems than just black smokers or hydrocarbon seeps. Many other ecosystems are characterized by moving fluids and this book provides an overview of the different habitats, their specific conditions as well as the technical challenges that have to be met when studying them. The book provides the current state of the art and will be a valuable resource for everybody that has an interest in such environments.
To satisfy the food demands of the global population, advanced technology based research is needed, that can extract the information from the plant metabolism and microbial gene pool and use it for improving plant health and productivity. Modern biotechnological tools have the ability to unlock the limitations of agricultural practices. However, the application of these tools is not well equipped. Moreover, eco-friendly agriculture by microbial inoculants is known to have positive influences on soil/plant health. Therefore it is relevant to explore the plant associated microbial niches, especially endophytes, epiphytes, and soil microbes and understand how they are benefitting each other. It can open new insights to develop sustainable agriculture practices by using consortia of microbes as plant helpers that recover the imbalanced agriculture systems and manage pathogenic diseases. This book presents the updates about the plant associated microbiomes and their contemporary uses. It covers the knowledge gap between soil and plant helper microbiomes and their application in the agriculture and allied sectors. Modern insights of phytobiomes are explored in various chapters on a variety of interrelated aspects of the fascinating areas like plant microbial interaction, integrated pest management, soil fertility intensification, sustainable crop production, and disease management. Sections in the book describe how to plant beneficial microbiomes have been utilized for sustainable green farming, with the aim to resolve the global food problem without harming the soil and environment health. This book is intended for everyone who is involved in agriculture, microbial biotechnology, bioinformatics, and all disciplines related to microbial biotechnology. These include academic students, scientists, and researchers at universities, institutes, industries, and government organizations who want to understand microbial linkages in a shorter time. It contains basic information that will be help to the non-specialist readers to understand progressive research.
This updated text collects all the introductory aspects of beer brewing science into one place for undergraduate brewing science courses. This expansive and detailed work is written in conversational style, walking students through all the brewing basics from the origin and history of beer to the brewing process to post-brew packaging and quality control and assurance. As an introductory text, this book assumes the reader has no prior knowledge of brewing science and only limited experience with chemistry, biology and physics. The text provides students with all the necessary details of brewing science using a multidisciplinary approach, with a thorough and well-defined program of in-chapter and end-of-chapter problems. As students solve these problems, they will learn how scientists think about beer and brewing and develop a critical thinking approach to addressing concerns in brewing science. As a truly comprehensive introduction to brewing science, Brewing Science: A Multidisciplinary Approach, Second Edition walks students through the entire spectrum of the brewing process. The different styles of beer, the molecular makeup and physical parameters, and how those are modified to provide different flavors are listed. All aspects of the brewery process, from the different setup styles to sterility to the presentation of the final product, are outlined in full. All the important brewing steps and techniques are covered in meticulous detail, including malting, mashing, boiling, fermenting and conditioning. Bringing the brewing process full circle, this text covers packaging aspects for the final product as well, focusing on everything from packaging technology to quality control. Students are also pointed to the future, with coverage of emerging flavor profiles, styles and brewing methods. Each chapter in this textbook includes a sample of related laboratory exercises designed to develop a student's capability to critically think about brewing science. These exercises assume that the student has limited or no previous experience in the laboratory. The tasks outlined explore key topics in each chapter based on typical analyses that may be performed in the brewery. Such exposure to the laboratory portion of a course of study will significantly aid those students interested in a career in brewing science.
An annotated English translation of the autobiography of Polish microbiologist Ludwik Hirszfeld (1884-1954), with a focus on his contributions to international public health. Ludwik Hirszfeld (1884-1954), one of the most prominent serologists of the twentieth century, discovered the inheritance and established the nomenclature of blood groups and opened the field of human population genetics. He also carried out groundbreaking research in the genetics of disease and immunology. Following World War II, he founded Poland's first Institute of Immunology in Wroclaw, which now bears his name. His autobiographical memoir, The Story of One Life, first published in Poland in 1946, immediately became a bestseller and has been reedited several times since. It is an outstanding account of a Holocaust survivor and a writer capable of depicting the uniqueness and the tragedy of countless individuals caught up in the nightmare of 1939-45. He recollects his time as a physician in the Serbian army in 1915 and his satisfaction as a scientist who helped rebuild Poland after the Treaty ofVersailles; in so doing the contrast between the world before and the world after World War II could not be starker. Hirszfeld wrote this book while in hiding after he escaped from the Warsaw ghetto in 1943; he buried the manuscript and retrieved it only after the war. Drawing on interviews with Hirszfeld's former students and family, as well as unpublished documents, this translation is annotated and has an introduction written by two scholars with unique qualifications to understand both the immediate setting in which Hirszfeld lived his life, and the broader implications of his work to the history of medicine. Marta A. Balinska is a writer and an international consultant in public health. William H. Schneider is professor of history at Indiana University.
This book reviews recent knowledge of the role of gut microbiome in health and disease. It covers extensive topics for several diseases, including metabolic-related diseases, allergies, gastrointestinal diseases, psychiatric diseases, and cancer, while also discussing therapeutic approaches by microbiota modification. Comprehensive and cutting-edge, Gut Microbiome-Related Diseases and Therapies deepens a reader's theoretical expertise in gut microbiome. Graduate and postdoctoral students, medical doctors, and biomedical researchers will benefit from this book.
This book summarizes the basics of actinobacteria, from microbiology to synthetic biology. It focuses on diversity, NRPS, sesquiterpenes, lantipeptide, bioinformatics apparatuses, cloning, CRISPR, reverse engineering, FDA supported medications, and marine actinobacteria. It also covers the latest trends in drug discovery from actinobacteria, and introduces several recently developed bioinformatics and synthetic biology tools to explore new antibiotics from actinobacteria. Many natural products such as polyketides, isoprenoids, phenazines, peptides, indolocarbarbazoles, sterols, and others have been isolated and characterized from actinobacteria. Some products are synthesized by the non-ribosomal peptide synthetases (NRPSs), polyketide synthases (PKSs), or other functional genes. Although genome sequencing has uncovered the differing qualities of these chemicals, recognizing new items and their biosynthetic pathways is still under examination. Cryptic metabolic pathways have been explored using molecular techniques or culture-dependent approaches. In recent years, researchers' primary interest is to identify the specific conditions or agents that wake the cryptic antibiotics. Several bioinformatics and synthetic biology tools were developed to explore new antibiotics from actinobacteria. The book comprises 14 chapters with different aspects of application and utilization of actinomycetes from the microbiology; systems biology, pharmacology of natural products, bioinformatics, actinomycete and its diversity, CRISPR, artificial Intelligence, synthetic biology, metabolic engineering, expressional studies, and biosynthetic gene clusters. The book delivers useful information on actinomyces to researchers, novices in genome designing, specialists, clinicians, policymakers, and professionals.
The Bifidobacteria and Related Organisms: Biology, Taxonomy, Applications brings together authoritative reviews on all aspects of Bifidobacteria and related genera. Their place within the Phylum Actinobacteria is discussed first, and this is followed by descriptions of the genera Bifidobacterium, Alloscardovia, Aeriscardovia, Bombiscardovia, Gardnerella, Metascardovia, Parascardovia and Scardovia and the currently accredited species within those genera. The increased availability of genome sequences and molecular tools for studying bifidobacteria provides important information about their taxonomy, physiology and interactions with their host. Also considerations about common bifidobacterial core maintenance during the mutual coevolution of a host and its intestinal microbes could be relevant for health claims for the ability of symbiotic gut bacteria to provide health benefits to their host, and for evaluating such claims in scientifically valid experiments. Chemotaxonomy is important to our understanding of these genera and so is considered along with physiological and biochemical aspects before proceeding to examine clinical and other practical aspects. The ability to maintain pure cultures and to grow cells in industrial quantities when required for applications requires that the cells' environmental and nutritional needs are well understood. Some species are important clinically and as animal digestive tract synbionts-and even play a part in honey production-so these matters are considered along with milk oligosaccharides' roles in gut flora development in neonates.
The cryosphere stands for environments where water appears in a frozen form. It includes permafrost, glaciers, ice sheets, and sea ice and is currently more affected by Global Change than most other regions of the Earth. In the cryosphere, limited water availability and subzero temperatures cause extreme conditions for all kind of life which microorganisms can cope with extremely well. The cryosphere's microbiota displays an unexpectedly large genetic potential, and taxonomic as well as functional diversity which, however, we still only begin to map. Also, microbial communities influence reaction patterns of the cryosphere towards Global Change. Altered patterns of seasonal temperature fluctuations and precipitation are expected in the Arctic and will affect the microbial turnover of soil organic matter (SOM). Activation of nutrients by thawing and increased active layer thickness as well as erosion renders nutrient stocks accessible to microbial activities. Also, glacier melt and retreat stimulate microbial life in turn influencing albedo and surface temperatures. In this context, the functional resilience of microbial communities in the cryosphere is of major interest. Particularly important is the ability of microorganisms and microbial communities to respond to changes in their surroundings by intracellular regulation and population shifts within functional niches, respectively. Research on microbial life exposed to permanent freeze or seasonal freeze-thaw cycles has led to astonishing findings about microbial versatility, adaptation, and diversity. Microorganisms thrive in cold habitats and new sequencing techniques have produced large amounts of genomic, metagenomic, and metatranscriptomic data that allow insights into the fascinating microbial ecology and physiology at low and subzero temperatures. Moreover, some of the frozen ecosystems such as permafrost constitute major global carbon and nitrogen storages, but can also act as sources of the greenhouse gases methane and nitrous oxide. In this book we summarize state of the art knowledge on whether environmental changes are met by a flexible microbial community retaining its function, or if the altered conditions also render the community in a state of altered properties that affect the Earth's element cycles and climate. This book brings together research on the cryosphere's microbiota including permafrost, glaciers, and sea ice in Arctic and Antarctic regions. Different spatial scales and levels of complexity are considered, spanning from ecosystem level to pure culture studies of model microbes in the laboratory. It aims to attract a wide range of parties with interest in the effect of climate change and/or low temperatures on microbial nutrient cycling and physiology.
This edited book aims to focus on microbial diversity in arid lands and deserts versus specific microbial assemblages associated with plants. The book explains ecological drivers that shape this diversity, how plant-associated microbiomes are selected, and their biotechnological potential are discussed. Diversity and functional redundancy of these associated PGPM make them very active in supporting plant improvement, health and resistance to drought, salt and other stresses, and these dimensions will be explored in this book. Implementing proper biotechnological applications of the arid and desert-adapted PGPM constitutes a sizeable challenge, and the book attempts to take up that challenge and help researchers in this field to gain a detailed understanding of PGPM from arid ecosystems. This book serves as a handbook for research workers, teachers, postgraduate students and extension personnel, other development workers, and policy planners engaged in arid zone development.
This book series focuses on current progress in the broad field of medical microbiology, and covers both basic and applied topics related to the study of microbes, their interactions with human and animals, and emerging issues relevant for public health. Original research and review articles present and discuss multidisciplinary findings and developments on various aspects of microbiology, infectious diseases, and their diagnosis, treatment and prevention. Advances in Microbiology, Infectious Diseases and Public Health is a subseries of Advances in Experimental Medicine and Biology, which has been publishing significant contributions in the field for over 30 years and is indexed in Medline, Scopus, EMBASE, BIOSIS, Biological Abstracts, CSA, Biological Sciences and Living Resources (ASFA-1), and Biological Sciences. 2018 Impact Factor: 2.126.
Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging is an eleven volume series that discusses in detail all aspects of autophagy machinery in the context of health, cancer, and other pathologies. Autophagy maintains homeostasis during starvation or stress conditions by balancing the synthesis of cellular components and their deregulation by autophagy. This series discusses the characterization of autophagosome-enriched vaccines and its efficacy in cancer immunotherapy. Autophagy serves to maintain healthy cells, tissues, and organs, but also promotes cancer survival and growth of established tumors. Impaired or deregulated autophagy can also contribute to disease pathogenesis. Understanding the importance and necessity of the role of autophagy in health and disease is vital for the studies of cancer, aging, neurodegeneration, immunology, and infectious diseases. Comprehensive and forward-thinking, these books offer a valuable guide to cellular processes while also inciting researchers to explore their potentially important connections.
This volume explores a collection of methods that studies genome editing across a variety of bacteria, phages, and plants. Chapters in this book cover topics such as scarless DNA recombineering of phage in the lysogenic state; HEMSE; Dup-In and DIRex; recombineering in Staphylococcus aureus; and genome editing with Cas9 in lactobacilli. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Recombineering: Methods and Protocols is a valuable resource for any researchers interested in learning more about this developing field.
Molecular Characterization of Autophagic Responses, Part A, presents a collection of methods for the qualitative and quantitative evaluation of virtually all the morphological, biochemical, and functional manifestations of autophagy, in vitro, ex vivo and in vivo, in organisms as distant as yeast and man. Autophagy is an evolutionarily conserved mechanism for the lysosomal degradation of superfluous or dangerous cytoplasmic entities, and plays a critical role in the preservation of cellular and organismal homeostasis. Monitoring the biochemical processes that accompany autophagy is fundamental for understanding whether autophagic responses are efficient or dysfunctional.
This book provides an overview of bidirectional communication between gut-microbiome-brain, pathways, nutrients, and metabolites that are involved in microbiota gut-brain axis (MGBA) interactions. Further it reviews the relevance of this axis in the neurological disorders and potential therapeutic interventions, involving gut microbiome or probiotics and prebiotics which can ameliorate the neurological disorders. The book examines the role of gut microbiota in the establishment and hemostasis of innate immune response and explores the possibility of development of microbiome-targeted therapeutic interventions. Notably, the book discusses the role of the gut microbiota and immune system on the maintenance of brain functions and the development of neurological disorders. It also highlights the recent advances in improving neurological diseases by phytochemicals, prebiotics and probiotics. This book is useful for researchers working in neuropharmacology, Clinical Research, toxicology, neurodegeneration, and stroke biology.
This book provides an overview of the latest advances concerning symbiotic relationships between plants and microbes, and their applications in plant productivity and agricultural sustainability. Symbiosis is a living phenomenon including dynamic variations in the genome, metabolism and signaling network, and adopting a multidirectional perspective on their interactions is required when studying symbiotic organisms. Although various plant-microbe symbiotic systems are covered in this book, it especially focuses on arbuscular mycorrhiza (AM) symbiosis and root nodule symbiosis, the two most prevalent systems. AM symbiosis involves the most extensive interaction between plants and microbes, in the context of phylogeny and ecology. As more than 90% of all known species of plants have the potential to form mycorrhizal associations, the productivity and species composition, as well as the diversity of natural ecosystems, are frequently dependent upon the presence and activity of mycorrhizas. In turn, root nodule symbiosis includes morphogenesis and is formed by communication between plants and nitrogen-fixing bacteria. The biotechnological application of plant-microbe symbiosis is expected to foster the production of agricultural and horticultural products while maintaining ecologically and economically sustainable production systems. Designed as a hands-on guide, this book offers an essential resource for researchers and students in the areas of agri-biotechnology, soil biology and fungal biology. |
You may like...
Unravelling Plant-Microbe Synergy
Dinesh Chandra, Pankaj Bhatt
Paperback
R3,433
Discovery Miles 34 330
Resource Recovery in Drinking Water…
Mika Sillanpaa, Ali Khadir, …
Paperback
R4,448
Discovery Miles 44 480
Synergistic Approaches for…
Riti Thapar Kapoor, Maulin P. Shah
Paperback
R3,460
Discovery Miles 34 600
Cell Volume Regulation, Volume 81
Irena Levitan, Eric Delpire, …
Hardcover
R4,454
Discovery Miles 44 540
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,463
Discovery Miles 34 630
|