![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Technical design > General
Functional verification is an art as much as a science. It requires not only creativity and cunning, but also a clear methodology to approach the problem. The Open Verification Methodology (OVM) is a leading-edge methodology for verifying designs at multiple levels of abstraction. It brings together ideas from electrical, systems, and software engineering to provide a complete methodology for verifying large scale System-on-Chip (SoC) designs. OVM defines an approach for developing testbench architectures so they are modular, configurable, and reusable. This book is designed to help both novice and experienced verification engineers master the OVM through extensive examples. It describes basic verification principles and explains the essentials of transaction-level modeling (TLM). It leads readers from a simple connection of a producer and a consumer through complete self-checking testbenches. It explains construction techniques for building configurable, reusable testbench components and how to use TLM to communicate between them. Elements such as agents and sequences are explained in detail.
- Provides designers and non-designers with new ideas and tools for creating useful, energy-and-resource-efficient product designs and systems - Offers a critical perspective on the impact of new technologies and product designs - Includes historic and contemporary examples, such as thermostats, electric lighting, air quality sensors, domestic maintenance, and methods of transportation - Written in an engaging, accessible tone for professionals and students.
What makes the Apple iPhone "cool"? Bang & Olufsen and
Samsung's televisions "beautiful"? Any of a wide variety of
products and services "special"? The answer is not simply
functionality or technology, for competitors' products are often as
good.
Composite decisions consist of interconnected parts or subdecisions and correspond to a composite (composable, modular, decomposable) system. The composite decision approach extends the traditional paradigm of decision making of Herbert A. Simon, i.e. choice of the best alternative(s), and realizes a two-stage solving scheme: (a) the selection of alternatives as the best subdecisions or local decisions and (b) composition of the selected local decisions into a composite global decision while taking into account the quality of the local decisions and their compatibility. Composite Systems Decisions describes an educational approach that is based on systems engineering and considered modular design of composite decisions. Divided into four parts, this book contains descriptions of basic systems approaches and examines basic a ~technologicala (TM) problems for composite systems, including: modular hierarchical design; multistage design; multistage planning; redesign/improvement/adaptation; evaluation; and, combinatorial evolution/development. Applied researchers, undergraduate and graduate students, and practitioners in many domains will find Composite Systems Decisions a valuable reference. The basic systems problems, solving schemes, and applied examples contained in the book will also be of interest to various scientists (e.g., mathematicians, computer scientists, economists, social engineers, etc.).
Innovative Shear Design presents a new, rational and economical design procedure that offers increased protection against shear for all types of structures. The first part of the book describes the internal forces imposed on any flexurally bent member, and goes on to describe how these can interact with external loading forces to cause failure. The author then details the new design approach, and explains how its implementation can prevent cracking and failure for a given load. The book contains numerous practical examples describing optimum design techniques for all types of structure. Innovative Shear Design is an essential reference for structural designers, architects, academics, and researchers. It will also be a key reference text for students of structural design.
As understanding of the engineering design and configuration processes grows, the recognition that these processes intrinsically involve imprecise information is also growing. This book collects some of the most recent work in the area of representation and manipulation of imprecise information during the syn thesis of new designs and selection of configurations. These authors all utilize the mathematics of fuzzy sets to represent information that has not-yet been reduced to precise descriptions, and in most cases also use the mathematics of probability to represent more traditional stochastic uncertainties such as un controlled manufacturing variations, etc. These advances form the nucleus of new formal methods to solve design, configuration, and concurrent engineering problems. Hans-Jurgen Sebastian Aachen, Germany Erik K. Antonsson Pasadena, California ACKNOWLEDGMENTS We wish to thank H.-J. Zimmermann for inviting us to write this book. We are also grateful to him for many discussions about this new field Fuzzy Engineering Design which have been very stimulating. We wish to thank our collaborators in particular: B. Funke, M. Tharigen, K. Miiller, S. Jarvinen, T. Goudarzi-Pour, and T. Kriese in Aachen who worked in the PROKON project and who elaborated some of the results presented in the book. We also wish to thank Michael J. Scott for providing invaluable editorial assis tance. Finally, the book would not have been possible without the many contributions and suggestions of Alex Greene of Kluwer Academic Publishers. 1 MODELING IMPRECISION IN ENGINEERING DESIGN Erik K. Antonsson, Ph.D., P.E."
Metal Cutting Mechanics outlines the fundamentals of metal cutting analysis, reducing the extent of empirical approaches to the problems as well as bridging the gap between design and manufacture. The author distinguishes his work from other works through these aspects: considering the system engineering of the cutting process identifying the singularity of the cutting process among other closely related manufacturing processes by chip formation, caused by bending and shear stresses in the deformation zone suggesting a distinctive way toward predictability of the metal cutting process devoting special attention to experimental methodology Metal Cutting Mechanics provides an exceptional balance between general reading and research analysis, presenting industrial and academic requirements in terms of basic scientific factors as well as application potential.
Offers a treatment of modern applications of modelling and simulation in crop, livestock, forage/livestock systems, and field operations. The book discusses methodologies from linear programming and neutral networks, to expert or decision support systems, as well as featuring models, such as SOYGRO, CROPGRO and GOSSYM/COMAX. It includes coverage on evaporation and evapotranspiration, the theory of simulation based on biological processes, and deficit irrigation scheduling.
Recognized as a "Recommended" title by Choice for their November 2020 issue. Choice is a publishing unit at the Association of College & Research Libraries (ACR&L), a division of the American Library Association. Choice has been the acknowledged leader in the provision of objective, high-quality evaluations of nonfiction academic writing. Presenting a fundamental definition of resilience, the book examines the concept of resilience as it relates to space system design. The book establishes the required definitions, relates its place to existing state-of-the-art systems engineering practices, and explains the process and mathematical tools used to achieve a resilient design. It discusses a variety of potential threats and their impact upon a space system. By providing multiple, real-world examples to illustrate the application of the design methodology, the book covers the necessary techniques and tools, while guiding the reader through the entirety of the process. The book begins with space systems basics to ensure the reader is versed in the functions and components of the system prior to diving into the details of resilience. However, the text does not assume that the reader has an extensive background in the subject matter of resilience. This book is aimed at engineers and architects in the areas of aerospace, space systems, and space communications.
Bringing together the concepts of design control and reliability engineering, this book is a must for medical device manufacturers. It helps them meet the challenge of designing and developing products that meet or exceed customer expectations and also meet regulatory requirements. Part One covers motivation for design control and validation, design control requirements, process validation and design transfer, quality system for design control, and measuring design control program effectiveness. Part Two discusses risk analysis and FMEA, designing-in reliability, reliability and design verification, and reliability and design validation.
Modern analytical theories of fatigue coupled with a knowledge of processing effects on metals make up the sound basis for designing machine parts that are free from unexpected failure. Fatigue Design: Life Expectancy of Machine Parts provides the information and the tools needed for optimal design. It highlights practical approaches for effectively solving fatigue problems, including minimizing the risk of hidden perils that may arise during production processes or from exposure to the environment.The material is presented with a dual approach: the excellent coverage of the theoretical aspects is accented by practical illustrations of the behavior of machine parts. The theoretical approach combines the fundamentals of solid mechanics, fatigue analysis, and crack propagation. The chapters covering fatigue theories are given special emphasis, starting with the basics and progressing to complicated multiaxial nonlinear problems.The practical approach concentrates on the effects of surface processing on fatigue life and it illustrates many faceted fatigue problems taken from case studies. The solutions demonstrate the authors' detailed analyses of failure and are intended to be used as preventive guidelines. The cases are a unique feature of the book. The numerical method used is the finite element method, and is presented with clear explanations and illustrations.Fatigue Design: Life Expectancy of Machine Parts is an extremely valuable tool for both practicing design engineers and engineering students.
Focusing on how a machine "feels" and behaves while operating, Machine Elements: Life and Design seeks to impart both intellectual and emotional comprehension regarding the "life" of a machine. It presents a detailed description of how machines elements function, seeking to form a sympathetic attitude toward the machine and to ensure its wellbeing through more careful and proper design. The book is divided into three sections for accessibility and ease of comprehension. The first section is devoted to microscopic deformations and displacements both in permanent connections and within the bodies of stressed parts. Topics include relative movements in interference fit connections and bolted joints, visual demonstrations and clarifications of the phenomenon of stress concentration, and increasing the load capacity of parts using prior elasto-plastic deformation and surface plastic deformation. The second part examines machine elements and units. Topics include load capacity calculations of interference fit connections under bending, new considerations about the role of the interference fit in key joints, a detailed examination of bolts loaded by eccentrically applied tension forces, resistance of cylindrical roller bearings to axial displacement under load, and a new approach to the choice of fits for rolling contact bearings. The third section addresses strength calculations and life prediction of machine parts. It includes information on the phenomena of static strength and fatigue; correlation between calculated and real strength and safety factors; and error migration.
This book systematically introduces the bionic nature of force sensing and control, the biomechanical principle on mechanism of force generation and control of skeletal muscle, and related applications in robotic exoskeleton. The book focuses on three main aspects: muscle force generation principle and biomechanical model, exoskeleton robot technology based on skeletal muscle biomechanical model, and SMA-based bionic skeletal muscle technology. This comprehensive and in-depth book presents the author's research experience and achievements of many years to readers in an effort to promote academic exchanges in this field. About the Author Yuehong Yin received his B.E. , M.S. and Ph.D. degrees from Nanjing University of Aeronautics and Astronautics, Nanjing, in 1990, 1995 and 1997, respectively, all in mechanical engineering. From December 1997 to December 1999, he was a Postdoctoral Fellow with Zhejiang University, Hangzhou, China, where he became an Associate Professor in July 1999. Since December 1999, he has been with the Robotics Institute, Shanghai Jiao Tong University, Shanghai, China, where he became a Professor and a Tenure Professor in December 2005 and January 2016, respectively. His research interests include robotics, force control, exoskeleton robot, molecular motor, artificial limb, robotic assembly, reconfigurable assembly system, and augmented reality. Dr. Yin is a fellow of the International Academy of Production Engineering (CIRP).
In today's sophisticated world, reliability stands as the ultimate arbiter of quality. An understanding of reliability and the ultimate compromise of failure is essential for determining the value of most modern products and absolutely critical to others, large or small. Whether lives are dependent on the performance of a heat shield or a chip in a lab, random failure is never an acceptable outcome. Written for practicing engineers, Practical Reliability Engineering and Analysis for System Design and Life-Cycle Sustainment departs from the mainstream approach for time to failure-based reliability engineering and analysis. The book employs a far more analytical approach than those textbooks that rely on exponential probability distribution to characterize failure. Instead, the author, who has been a reliability engineer since 1970, focuses on those probability distributions that more accurately describe the true behavior of failure. He emphasizes failure that results from wear, while considering systems, the individual components within those systems, and the environmental forces exerted on them. Dependable Products Are No Accident: A Clear Path to the Creation of Consistently Reliable Products Taking a step-by-step approach that is augmented with current tables to configure wear, load, distribution, and other essential factors, this book explores design elements required for reliability and dependable systems integration and sustainment. It then discusses failure mechanisms, modes, and effects-as well as operator awareness and participation-and also delves into reliability failure modeling based on time-to-failure data considering a variety of approaches. From there, the text demonstrates and then considers the advantages and disadvantages for the stress-strength analysis approach, including various phases of test simulation. Taking the practical approach still further, the author covers reli
Before a structure or component can be completed, before any analytical model can be constructed, and even before the design can be formulated, you must have a fundamental understanding of damage behavior in order to produce a safe and effective design. Damage Mechanics presents the underlying principles of continuum damage mechanics along with the latest research. The authors consider both isotropic and anisotropic theories as well as elastic and elasto-plastic damage analyses using a self-contained, easily understood approach. Beginning with the requisite mathematics, Damage Mechanics guides you from the very basic concepts to advanced mathematical and mechanical models. The first chapter offers a brief MAPLE (R) tutorial and supplies all of the MAPLE commands needed to solve the various problems throughout the chapter. The authors then discuss the basics of elasticity theory within the continuum mechanics framework, the simple case of isotropic damage, effective stress, damage evolution, kinematic description of damage, and the general case of anisotropic damage. The remainder of the book includes a review of plasticity theory, formulation of a coupled elasto-plastic damage theory developed by the authors, and the kinematics of damage for finite-strain elasto-plastic solids. From fundamental concepts to the latest advances, this book contains everything that you need to study the damage mechanics of metals and homogeneous materials.
Offers designers and users of mechanical systems an overview of structural stiffness and damping and their critical roles in mechanical design. The text assesses the relationship between stiffness and damping parameters in mechanical systems and structural materials. An accompanying disk contains detailed analyses of stiffness- and damping-critical systems.
Since the 1970's, an increasing amount of specialized research has focused on the problems created by instability of internal flow in hydroelectric power plants. However, progress in this field is hampered by the inter disciplinary nature of the subject, between fluid mechanics, structural mechanics and hydraulic transients. Flow-induced Pulsation and Vibration in Hydroelectric Machinery provides a compact guidebook explaining the many different underlying physical mechanisms and their possible effects. Typical phenomena are described to assist in the proper diagnosis of problems and various key strategies for solution are compared and considered with support from practical experience and real-life examples. The link between state-of the-art CFD computation and notorious practical problems is discussed and quantitative data is provided on normal levels of vibration and pulsation so realistic limits can be set for future projects. Current projects are also addressed as the possibilities and limitations of reduced-scale model tests for prediction of prototype performance are explained. Engineers and project planners struggling with the practical problems will find Flow-induced Pulsation and Vibration in Hydroelectric Machinery to be a comprehensive and convenient reference covering key topics and ideas across a range of relevant disciplines.
The Spatialities of Radio Astronomy examines the multidisciplinary overlap between the spatial disciplines and the studies of science and technology through a comparative study of four of the world’s most important radio telescopes. Employing detailed analysis, historical research, interviews, personal observations, and various conceptual manoeuvres, Guy Trangoš reveals the depth of spatial process active at these scientific sites and the territories they traverse. Through the conceptual frameworks of territory, hyper-concentration, and contingency, Trangoš interprets the telescope as exploded across space and time, present in multiple connected sites simultaneously, and active in the production of space. He develops a historiographic and contemporary analysis of the Atacama Large Millimeter/submillimeter Array (ALMA, Chile); the Five-hundred-meter Aperture Spherical radio Telescope (FAST, China); the Arecibo Observatory (Puerto Rico); and the MeerKAT/SKA (South Africa). These case studies are global exemplars of the different spatial transformations that occur through science. Their relationships to surrounding communities and landscapes reveal deeper constitutional processes embodied in each institutional and spatial form. This book spans the modern history of architecture and science, the studies of science, technology and society, and urban theory. It is of specific interest to architects and designers expanding their analysis of spatial production, scholars in the study of geography, landscape, science, technology, and astronomy, and people fascinated with how these radio telescopes were conceptualised, built, and operate today.
Without standardized construction elements such as nuts, bolts, bearings, beams, resistors and the like, the design of physical equipment is hopelessly inefficient, and engineers are continually bogged down with re-designing these elements over and over again. The same can be said for the domain of ideas and performance requirements. Only through a process of standardization of the corresponding functional elements will systems engineering truly live up to its potential of increased efficiency and quality. Designing Complex Systems: Foundations of Design in the Functional Domain introduces students and practitioners in the field of system design to a particular methodology that addresses design issues in a rigorous and consistent top-down fashion. It also reassesses the characteristics of engineering and its place within the field of intellectual activity, in particular, examining the creative aspects of design as reflected in the difference between engineers and technicians. Erik W. Aslaksen brings forty years of experience to the table with this groundbreaking work. He examines how the concept of value can provide a quantitative measure of that wider interaction of the engineered object with its environment. With its forward-looking approach and holistic perspective, this volume is sure to advance the field of knowledge of systems engineering for years to come.
"Provides previously unavailable material in sound quality crucial for a more effective design process. Presents all aspects of product sound quality, such as ""rules of thumb"" and design formulas and charts. Covers sound radiation and targeting, resolving, and testing design features."
"Bridges the gap between laboratory research and practical applications in industry and power utilities-clearly organized into three distinct sections that cover basic theories and concepts, execution of principles, and innovative new techniques. Includes new chapters detailing industrial uses and isues of hazard and safety, and review excercises to accompany each chpter."
In order to compete in the current commercial environment companies must produce greater product variety, at lower cost, all within a reduced product life cycle. To achieve this, a concurrent engineering philosophy is often adopted. In many cases the main realization of this is Design for Manufacture and Assembly (DFM/A). There is a need for in-depth study of the architectures for DFM/A systems in order that the latest software and knowledge-based techniques may be used to deliver the DFM/A systems of tomorrow. This architecture must be based upon complete understanding of the issues involved in integrating the design and manufacturing domains. This book provides a comprehensive view of the capabilities of advanced DFM/A systems based on a common architecture.
This book provides comprehensive information for various planetary gear trains, with practical applications and comprehensive references to technical articles. In the text's chapters, readers can find all the information needed for various types of gear trains, with illustrations and examples. The authors help gear designers to creatively understand the design of gears, as well as master the mechanical calculations needed. Planetary Gear Trains is the most comprehensive and up-to-date work available in this key technical area. The book reflects not only teaching, but also the practical experience of the authors. It was developed under the motto "From practice to practice".
This textbook describes the basic mechanical features of concrete and explains the main resistant mechanisms activated in the reinforced concrete structures and foundations when subjected to centred and eccentric axial force, bending moment, shear, torsion and prestressing. It presents a complete set of limit-state design criteria of the modern theory of RC incorporating principles and rules of the final version of the official Eurocode 2. This textbook examines methodological more than notional aspects of the presented topics, focusing on the verifications of assumptions, the rigorousness of the analysis and the consequent degree of reliability of results. Each chapter develops an organic topic, which is eventually illustrated by examples in each final paragraph containing the relative numerical applications. These practical end-of-chapter appendices and intuitive flow-charts ensure a smooth learning experience. The book stands as an ideal learning resource for students of structural design and analysis courses in civil engineering, building construction and architecture, as well as a valuable reference for concrete structural design professionals in practice. |
![]() ![]() You may like...
Social Justice Pedagogies in Health and…
Goeran Gerdin, Wayne Smith, …
Hardcover
Freezing Order - A True Story Of Russian…
Bill Browder
Paperback
![]()
How to Get Strong and How to Stay so…
William 1843-1904 Blaikie
Hardcover
R795
Discovery Miles 7 950
|