![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Technical design > General
Structural control is an approach aimed at the suppressing unwanted dynamic phenomena in civil structures. It proposes the use of methods and tools from control theory for the analysis and manipulation of a structure's dynamic behavior, with emphasis on suppression of seismic and wind responses. This book addresses problems in optimal structural control. Its goal is to provide solutions and techniques for these problems by using optimal control theory. Thus, it deals with the solution of optimal control design problems related to passive and semi-active controlled structures. The formulated problems consider constraints and excitations which are common in structural control. Optimal control theory is used in order to solve these problems in a rigorous manner. Even though there are many works in this field, none comprise optimization techniques with firm theoretical background that address the solution of passive and semi-active structural control design problems. The book begins with a discussion on models which are commonly used for civil structures and control actuators. Modern theoretical notions, such as dissipativity and passivity of dynamic systems are discussed in context of the addressed problems. Optimal control theory and suitable successive methods are reviewed. Novel solutions for optimal passive and semi-active control design problems are derived, based on firm theoretical foundations. These results are verified by numerical simulations of typical civil structures which are subjected to different types of dynamic excitations.
Understanding and applying the principles of ergonomics consistently in an organization not only reduces the risk of employee injuries, but it also reduces an organization's costs and increases productivity. This newly updated handbook examines 17 new workplace factors 50 in all to consider when implementing an ergonomics program. Organized alphabetically by factor, each section includes a descriptive checklist, allowing managers to quickly assess each factor's status and level of conformance with safety, quality, and productivity considerations. The author, an internationally recognized expert and public speaker, will show you why ergonomics is a business solution and not a business problem, how to create cost-effective ergonomics programs, which step-by-step procedures to use for evaluating a workplace environment and implementing ergonomic changes, how to accommodate the needs of aging and disabled workers, and how to use ergonomics to increase productivity. A glossary of ergonomic terms and a listing of sources of additional information are included.
The updated and improved second edition of Direct Gear Design details a nonstandard gear design approach that makes it possible to significantly improve gear drive performance. Providing engineers with gear design solutions beyond standard limits, this book delivers engineers with practical and innovative solutions to optimize gearing technologies. The majority of modern gears are over-standardized, not allowing gear design engineers to see possible gear design solutions outside of standard limits. The book explores opportunities to improve and optimize gears beyond these limitations. The method of Direct Gear Design has been proven to maximise gear drive performance, increase transmission load capacity and efficiency, and reduce size and weight. Discussing the use of gears made from powder metal and plastic, the book surveys gear manufacture and makes use of extensive references to encourage further exploration of gear design innovation. Additionally, the book provides an overview of manufacturing technologies and traditional gear design, as well as covering topics such as asymmetric gears, tolerance selection and measurement methods of custom gears. Written accessibly, with a focus on practical examples, this fully updated edition will serve as a guidebook for all professionals exploring high-performance gearing system technologies.
There were an estimated 50 million people worldwide living with dementia in 2017 and this number will almost double every 20 years, reaching 82 million in 2030. Design has significant potential to contribute to managing this global concern. This book is the first to synthesise the considerable research and projects in dementia and design. Design interactions is a new way of considering how we can improve the relationship between people, products, places and services and of course technology trends, such as the 'internet of things', offer great opportunities in providing new ways to connect people with services and products that can contribute to healthier lifestyles and mechanisms to support people with acute and chronic conditions. In light of this, the book explores the contribution and future potential of design for dementia through the lens of design interactions, such as people, contexts, material and things. Design for People Living with Dementia is a guide to this innovative and cutting-edge field in healthcare. This book is essential reading for healthcare managers working to provide products, services and care to people with dementia, as well as design researchers and students. .
This book explicates the relationships between design thinking, critical making, and socially responsive technical communication. It leverages the recent technology-powered DIY culture called "the Maker Movement" to identify how citizen innovation can inform cutting-edge social innovation that advocates for equitable change and progress on today's "wicked" problems. After offering a succinct account of the origin and recent history of design thinking, along with its connections to the design paradigm in writing studies, the book analyzes maker culture and its influences on innovation and education through an ethnographic study of three academic makerspaces. It offers opportunities to cultivate a sense of critical changemaking in technical communication students and practitioners, showcasing examples of socially responsive innovation and expert interviews that urge a disciplinary attention to social justice advocacy and an embrace of the design-thinking principle of radical collaboration. The value of design thinking methodologies for teaching and practicing socially responsible technical communication are demonstrated as the author argues for a future in the field that sees its constituents as leaders in radical innovation to solve wicked social problems. This book is essential reading for instructors, students, and practitioners of technical communication, and can be used as a supplemental text for graduate and undergraduate courses in usability and user-centered design and research.
There is a wide consensus that introduction of technology to the production process contributes to an overall economic value, however, confusion between technology, knowledge and capital often makes value calculations ambiguous and non-objective. The Contribution of Technology to Added Value addresses not only this issue of definition but also provides a production model to assess the value contribution of technology within the production process. A clarification of fundamental semantics provides a significant taxonomy for technology dependence, and allows understanding and modeling of how knowledge, technology and capital individually contribute to production and to value adding. A new technology dependence taxonomy is proposed and assessed following chapters explaining growth models, the KTC model and technology index values. Balancing theoretical knowledge with real-world data and applications The Contribution of Technology to Added Value clarifies the issue of value adding for a range of different viewpoints and purposes; from academic to industry and service across engineering, economics and management.
This book focuses on new developments in polytopic projects, particularly on implementation domains and case studies, as well as high-dimensional methodology. Polytopic projects are based on a general reference architecture inspired and shared by the functional organization of organisms and enterprises as informational and cognitive systems, the scientific and engineering methodology and the operational structure of existing self-evolvable and self-sustainable systems.
This textbook draws on the authors' experience gained by teaching courses for engineering students on e.g. vehicle mechanics, vehicle system design, and chassis design; and on their practical experience as engineering designers for vehicle and chassis components at a major automotive company. The book is primarily intended for students of automotive engineering, but also for all technicians and designers working in this field. Other enthusiastic engineers will also find it to be a useful technical guide. The present volume (The Automotive Chassis - Volume 1: Component Design) focuses on automotive chassis components, such as:* the structure, which is usually a ladder framework and supports all the remaining components of the vehicle;* the suspension for the mechanical linkage of the wheels;* the wheels and tires;* the steering system;* the brake system; and* the transmission system, used to apply engine torque to the driving wheels. This thoroughly revised and updated second edition presents recent developments, particularly in brake, steering, suspension and transmission subsystems. Special emphasis is given to modern control systems and control strategies.
This book introduces readers to the core principles and methodologies of product development, and highlights the interactions between engineering design and industrial design. It shows to what extent the two cultures can be reconciled, and conversely what makes each of them unique. Although the semantic aspect is fundamental in industrial design, while the functional aspect is essential for the industrial product, the interaction between the two worlds is strategically vital. Design is also a strategic problem-solving process that drives innovation, builds business success and leads to better quality of life through innovative products, systems, services and experiences. The book connects product development with the concepts and strategies of innovation, recognizing that product design is a complex process in which invention, consumers' role, industrial technologies, economics and the social sciences converge. After presenting several examples of artifacts developed up to the conceptual phase or built as prototypes, the book provides a case study on a packaging machine, showcasing the principles that should underlie all design activities, and the methods that must be employed to successfully establish a design process. The book is primarily targeted at professionals in the industry, design engineers and industrial designers, as well as researchers and students in design schools, though it will also benefit any reader interested in product design.
The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valuable addition to the body of shell research literature of continuing importance. This work can be used for university courses. It also shows professionals how to perform manual calculations of the main force flow in shell structures, and provides guidance for structural engineers estimating stresses and deformations.
In this new work, Arthur O. Eger and Huub Ehlhardt present a 'Theory of Product Evolution'. They challenge the popular notion that we owe the availability of products solely to genius inventors. Instead, they present arguments that show that a process of variation, selection, and accumulation of 'know-how' (to make) and 'know-what' (function to realize) provide an explanation for the emergence of new types of products and their subsequent development into families of advanced versions. This theory employs a product evolution diagram as an analytical framework to reconstruct the development history of a product family and picture it as a graphical narrative. The authors describe the relevant literature and case studies to place their theory in context. The 'Product Phases Theory' is used to create predictions on the most likely next step in the evolution of a product, offering practical tools for those involved in new product development.
This book is about how to be a design academic. In another words, how to manage the various challenges, requirements, and processes that come with both the everyday and extra-ordinary parts of an academic role in design fields (from architecture, urban design, interior design and landscape architecture, to fashion, industrial, interaction and graphic design). The book is organised in two parts - Part 1, Starting out and Part 2, Becoming a Leader. It includes real-life experiences of actual academics and offers a wide range of experiences of authors from early career researchers to full professors and heads of schools. It contains all aspects of academic life, including the highs and lows of teaching, research, leadership, and managing your working life and your career. This book is perfect for academics, aspiring academics, and research students in a wide range of design fields.
This book discusses all spacecraft attitude control-related topics: spacecraft (including attitude measurements, actuator, and disturbance torques), modeling, spacecraft attitude determination and estimation, and spacecraft attitude controls. Unlike other books addressing these topics, this book focuses on quaternion-based methods because of its many merits. The book lays a brief, but necessary background on rotation sequence representations and frequently used reference frames that form the foundation of spacecraft attitude description. It then discusses the fundamentals of attitude determination using vector measurements, various efficient (including very recently developed) attitude determination algorithms, and the instruments and methods of popular vector measurements. With available attitude measurements, attitude control designs for inertial point and nadir pointing are presented in terms of required torques which are independent of actuators in use. Given the required control torques, some actuators are not able to generate the accurate control torques, therefore, spacecraft attitude control design methods with achievable torques for these actuators (for example, magnetic torque bars and control moment gyros) are provided. Some rigorous controllability results are provided. The book also includes attitude control in some special maneuvers, such as orbital-raising, docking and rendezvous, that are normally not discussed in similar books. Almost all design methods are based on state-spaced modern control approaches, such as linear quadratic optimal control, robust pole assignment control, model predictive control, and gain scheduling control. Applications of these methods to spacecraft attitude control problems are provided. Appendices are provided for readers who are not familiar with these topics.
Advances in engineering precision have tracked with technological progress for hundreds of years. Over the last few decades, precision engineering has been the specific focus of research on an international scale. The outcome of this effort has been the establishment of a broad range of engineering principles and techniques that form the foundation of precision design. Today's precision manufacturing machines and measuring instruments represent highly specialised processes that combine deterministic engineering with metrology. Spanning a broad range of technology applications, precision engineering principles frequently bring together scientific ideas drawn from mechanics, materials, optics, electronics, control, thermo-mechanics, dynamics, and software engineering. This book provides a collection of these principles in a single source. Each topic is presented at a level suitable for both undergraduate students and precision engineers in the field. Also included is a wealth of references and example problems to consolidate ideas, and help guide the interested reader to more advanced literature on specific implementations.
This book presents a set of tools that will aid in deciding whether a project should go ahead, be improved, or abandoned altogether by pinpointing its vulnerabilities. It offers a review of project feasibility analysis, and more critically, psychodynamic aspects that are often neglected, including how stakeholders interact. It provides a complement to the common techniques used for analyzing technical, financial, and marketing feasibility. The goal is to identify "hidden truths" and eliminate those gray areas that jeopardize the success of a given project. The focus is on uncovering points of vulnerabilities in four key aspects of a project: People, Power, Processes, and Plan.
This handy book provides a single, up-to-date source of information for increasing the life of tool steels through optimized design and manufacturing. Supplying a solid understanding of the metallurgy involved, the text explains how material compositions, manufacturing processes, heat treatments, surface hardening techniques, and coatings affect tool steel properties, grades, and performance. It also explores real-life case studies and failure analyses, offering examples of die-life parameters and hints for modifying tool steels and heat treatments during cutting or forming processes. While the book offers deep coverage of properties, microstructure, and manufacturing, its focus is on describing the performance of each application of this special class of ferrous materials. Provides a single, up-to-date source of information for increasing the life of tool steels through optimized design and manufacturing. Explains how material compositions, manufacturing processes, heat treatments, surface hardening techniques, and coatings affect tool steel properties, grades, and performance. Supplies a solid understanding of the metallurgy involved in tool steel manufacturing, machining, hot and cold working, and molding. Offers examples of die-life parameters and hints for modifying tool steels and heat treatments during cutting or forming processes. Includes real-life case studies and failure analyses from the Villares Metals plant in Brazil.
The robotic mechanism and its controller make a complete system. As the robotic mechanism is reconfigured, the control system has to be adapted accordingly. The need for the reconfiguration usually arises from the changing functional requirements. This book will focus on the adaptive control of robotic manipulators to address the changed conditions. The aim of the book is to summarise and introduce the state-of-the-art technologies in the field of adaptive control of robotic manipulators in order to improve the methodologies on the adaptive control of robotic manipulators. Advances made in the past decades are described in the book, including adaptive control theories and design, and application of adaptive control to robotic manipulators.
In a presentation that formalizes what makes up decision based design, Decision Based Design defines the major concepts that go into product realization. It presents all major concepts in design decision making in an integrated way and covers the fundamentals of decision analysis in engineering design. It also trains engineers to understand the impacts of design decision. The author teaches concepts in demand modeling and customer preference modeling and provides examples. This book teaches most fundamental concepts encountered in engineering design like: concept generation, multiattribute decision analysis, reliability engineering, design optimization, simulation, and demand modeling. The book provides the tools engineering practitioners and researchers need to first understand that engineering design is best viewed as a sequence of decisions made by the stakeholders involved and then apply the decision based design concepts in practice. It teaches fundamental concepts encountered in engineering design, such as concept generation, multiattribute decision analysis, reliability engineering, design optimization, simulation, and demand modeling. This book helps students and practitioners understand that there is a rigorous way to analyze engineering decisions taking into consideration all the potential technical and business impacts of their decisions. It can be used in its entirety to teach a course in decision based design, while selected chapters can also be used to cover courses in subdisciplines that make up decision based design.
Design for Global Challenges and Goals charts the developments, opportunities and challenges for design research in addressing global challenges facing developing contexts focusing on the UN's Sustainable Development Goals. The book explores the role that design and social responsibility play in the UN Sustainable Development Goals and how design works in developing contexts. It presents 10 design-led case studies addressing different Sustainable Development Goals ranging from reducing poverty and hunger, improving health and wellbeing, promoting gender equality, developing more sustainable cities and communities, encouraging more responsible consumption and production, and tackling climate change. Design for Global Challenges and Goals also addresses the future, offering foresight into the research in global challenges by identifying the opportunities and emerging trends for researchers. Providing a guide to the state of the art of design research that addresses the Sustainable Development Goals, this book will be of interest to researchers, practitioners and students who want their research to address global challenges.
Naturebot: Unconventional Visions of Nature presents a humanities-oriented addition to the literature on biomimetics and bioinspiration, an interdisciplinary field which investigates what it means to mimic nature with technology. This technology mirrors the biodiversity of nature and it is precisely this creation of technological metaphors for the intricate workings of the natural world that is the real subject of Naturebot. Over the course of the book, Barilla applies the narrative conventions of the nature writing genre to this unconventional vision of nature, contrasting the traditional tropes and questions of natural history with an expanding menagerie of creatures that defy conventional categories of natural and artificial. In keeping with its nature writing approach, the book takes us to where we can encounter these creatures, examining the technological models and the biotic specimens that inspired them. In doing so, it contemplates the future of the human relationship to the environment, and the future of nature writing in the 21st century. This book will be of great interest to students and scholars of biomimetics, environmental literary studies/ecocriticism, and the environmental humanities.
This book introduces the principles and practices in automotive systems, including modern automotive systems that incorporate the latest trends in the automobile industry. The fifteen chapters present new and innovative methods to master the complexities of the vehicle of the future. Topics like vehicle classification, structure and layouts, engines, transmissions, braking, suspension and steering are illustrated with modern concepts, such as battery-electric, hybrid electric and fuel cell vehicles and vehicle maintenance practices. Each chapter is supported with examples, illustrative figures, multiple-choice questions and review questions. Aimed at senior undergraduate and graduate students in automotive/automobile engineering, mechanical engineering, electronics engineering, this book covers the following: Construction and working details of all modern as well as fundamental automotive systems Complexities of operation and assembly of various parts of automotive systems in a simplified manner Handling of automotive systems and integration of various components for smooth functioning of the vehicle Modern topics such as battery-electric, hybrid electric and fuel cell vehicles Illustrative examples, figures, multiple-choice questions and review questions at the end of each chapter
- Provides a cross-disciplinary overview of design theory through the lens of cultural studies, aesthetics and history - Offers a departure from the traditional compartmentalization of practice, history and theory - Engages student readers in contemporary design debates surrounding responsibility, cultural and social awareness and the contexts products are manufactured within.
Introducing a new engineering product or changing an existing model involves developing designs, reaching economic decisions, selecting materials, choosing manufacturing processes, and assessing environmental impact. These activities are interdependent and should not be performed in isolation from each other. This is because the materials and processes used in making a product can have a major influence on its design, cost, and performance in service. This Fourth Edition of the best-selling Materials and Process Selection for Engineering Design takes all of this into account and has been comprehensively revised to reflect the many advances in the fields of materials and manufacturing, including: Increasing use of additive manufacturing technology, especially in biomedical, aerospace and automotive applications Emphasizing the environmental impact of engineering products, recycling, and increasing use of biodegradable polymers and composites Analyzing further into weight reduction of products through design changes as well as material and process selection, especially in manufacturing products such as electric cars Discussing new methods for solving multi-criteria decision-making problems, including multi-component material selection as well as concurrent and geometry-dependent selection of materials and joining technology Increasing use of MATLAB by engineering students in solving problems This textbook features the following pedagogical tools: New and updated practical case studies from industry A variety of suggested topics and background information for in-class group work Ideas and background information for reflection papers so readers can think critically about the material they have read, give their interpretation of the issues under discussion and the lessons learned, and then propose a way forward Open-book exercises and questions at the end of each chapter where readers are evaluated on how they use the material, rather than how well they recall it, in addition to the traditional review questions Includes a solutions manual and PowerPoint lecture materials for adopting professors Aimed at students in mechanical, manufacturing, and materials engineering, as well as professionals in these fields, this book provides the practical know-how in order to choose the right materials and processes for development of new or enhanced products.
Get Ready for the Future of Additive Manufacturing Additive Manufacturing: Innovations, Advances, and Applications explores the emerging field of additive manufacturing (AM)-the use of 3D printing to make prototype parts on demand. Often referred to as the third industrial revolution, AM offers many advantages over traditional manufacturing. This process enables users to quickly build three-dimensional objects from the bottom-up, adding material one cross-sectional layer at a time directly from a computer model. This book provides a clear overview of specific technologies related to AM. It covers existing and emerging techniques in AM in use for a wide spectrum of manufacturing applications, and highlights the advantages of each technique with specific references to technological applications. Introduces Valuable Processes for Making Prototype Parts among Manufacturers of Many Types The book outlines many of the processes developed using various materials ranging from metals to plastics, and composites to human tissue. It presents recent innovations and potential viable applications that include: near-net shape capabilities, superior design, geometric flexibility, innovations in fabrication using multiple materials, and reduced tooling and fixturing. It also introduces several illustrations and case studies that focus on the present and far-reaching applications, developments, and future prospects of AM technologies. Written by renowned experts in their fields, this book: Covers the reactive inkjet printing of nylon materials relevant to AM Discusses the AM of metals using the techniques of free space deposition and selective laser melting Provides a comparison between AM materials and human tissues Addresses the use of AM for medical devices and drug and cell delivery Focuses on the relevance of AM to rare earth magnets and more Additive Manufacturing: Innovations, Advances, and Applications emphasizes the use of AM commensurate with advances in technical applications, and provides a solid background on the fundamentals and principles of this rapidly developing field.
Pressure vessels are prone to explosion while in operation, due to possible errors in material selection, design and other engineering activities. Addressing issues at hand for a working professional, this book covers material selection, testing and design of pressure vessels which enables users to effectively use code rules and available design softwares. Relevant equation derivations have been simplified with comparison to ASME codes. Analysis of special components flange, bellow and tube sheet are included with their background. Topics on tube bend, supports, thermal stresses, piping flexibility and non-pressure parts are described from structural perspective. Vibration of pressure equipment components are covered as well. |
![]() ![]() You may like...
Questions Great Financial Advisors…
Alan Parisse, David Richman
Hardcover
R652
Discovery Miles 6 520
Polymer Optical Fibres - Fibre Types…
Christian-Alexander Bunge, Markus Beckers, …
Hardcover
Investing in China and Chinese…
Xiuping Zhang, Bruce P Corrie
Hardcover
R4,112
Discovery Miles 41 120
Outward Foreign Direct Investment (FDI…
Tomasz Doroyski, Anetta Kuna-Marsza?Ek
Hardcover
R5,787
Discovery Miles 57 870
|