![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Technology: general issues > Technical design > General
This book consists of peer-reviewed papers, presented at the International Conference on Sustainable Design and Manufacturing (SDM 2020). Leading-edge research into sustainable design and manufacturing aims to enable the manufacturing industry to grow by adopting more advanced technologies and at the same time improve its sustainability by reducing its environmental impact. Relevant themes and topics include sustainable design, innovation and services; sustainable manufacturing processes and technology; sustainable manufacturing systems and enterprises; and decision support for sustainability. Application areas are wide and varied. The book provides an excellent overview of the latest developments in the sustainable design and manufacturing areas.
- Provides a cross-disciplinary overview of design theory through the lens of cultural studies, aesthetics and history - Offers a departure from the traditional compartmentalization of practice, history and theory - Engages student readers in contemporary design debates surrounding responsibility, cultural and social awareness and the contexts products are manufactured within.
The updated and improved second edition of Direct Gear Design details a nonstandard gear design approach that makes it possible to significantly improve gear drive performance. Providing engineers with gear design solutions beyond standard limits, this book delivers engineers with practical and innovative solutions to optimize gearing technologies. The majority of modern gears are over-standardized, not allowing gear design engineers to see possible gear design solutions outside of standard limits. The book explores opportunities to improve and optimize gears beyond these limitations. The method of Direct Gear Design has been proven to maximise gear drive performance, increase transmission load capacity and efficiency, and reduce size and weight. Discussing the use of gears made from powder metal and plastic, the book surveys gear manufacture and makes use of extensive references to encourage further exploration of gear design innovation. Additionally, the book provides an overview of manufacturing technologies and traditional gear design, as well as covering topics such as asymmetric gears, tolerance selection and measurement methods of custom gears. Written accessibly, with a focus on practical examples, this fully updated edition will serve as a guidebook for all professionals exploring high-performance gearing system technologies.
"Manufacturing and Design" presents a fresh view on the world of industrial production: thinking in terms of both abstraction levels and trade-offs. The book invites its readers to distinguish between what is possible in principle for a certain process (as determined by physical law); what is possible in practice (the production method as determined by industrial state-of-the-art); and what is possible for a certain supplier (as determined by its production equipment). Specific processes considered here include metal forging, extrusion, and casting; plastic injection molding and thermoforming; additive manufacturing; joining; recycling; and more. By tackling the field of manufacturing processes from this new
angle, this book makes the most out of a reader's limited time. It
gives the knowledge needed to not only create well-producible
designs, but also to understand supplier needs in order to find the
optimal compromise. Apart from improving design for production,
this publication raises the standards of thinking about
producibility.
III European Conference on Computational Mechanics: Solids, Structures and Coupled Problem in Engineering Computational Mechanics in Solid, Structures and Coupled Problems in Engineering is today a mature science with applications to major industrial projects. This book contains the edited version of the Abstracts of Plenary and Keynote Lectures and Papers, and a companion CD-ROM with the full-length papers, presented at the III European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering (ECCM-2006), held in the National Laboratory of Civil Engineering, Lisbon, Portugal 5th - 8th June 2006. The book reflects the state-of-art of Computation Mechanics in Solids, Structures and Coupled Problems in Engineering and it includes contributions by the world most active researchers in this field.
Electrodissolution Processes: Fundamentals and Applications discusses the basic principles involved in high-rate anodic dissolution processes and their application in advanced machining, micromachining, and finishing operations. The fundamentals section of the book discusses the anodic dissolution behavior of different classes of metals and the influence of mass transport, current distribution, and surface film properties on the metal removal rate and surface finishing. The applications section of the book presents essential elements of electrochemical and assisted techniques for precision machining, micromachining, and polishing of advanced materials, including hard-to-machine conducting ceramic materials. Features A first-of-its-kind book that provides updated scientific and engineering information related to high-rate anodic dissolution processes Highlights the importance of the understanding of basic principles required for designing and optimizing ECM/EMM/EP processes Gives equal emphasis to the fundamentals and applications of electrodissolution processes Discusses the high-rate anodic dissolution of two broad classes of materials, namely, engineering and refractory materials Presents case studies to demonstrate the capabilities of different electrochemical and assisted machining, micromachining, and finishing operations Presents a dedicated chapter on electrochemical planarization of copper interconnects Madhav Datta is the Chairman of Amrita Center for Industrial Research and Innovation and a Distinguished Professor in the Department of Chemical Engineering and Materials Science, Amrita University, Coimbatore, India.
The concept of digitalization captures the widespread adoption of digital technologies in our lives, in the structure and functioning of organizations and in the transformation of our economy and society. Digital technologies for data processing and communication underly high-impact innovations including the Internet of Things, wireless multimedia, artificial intelligence, big data, enterprise platforms, social networks and blockchain. These digital innovations not only bring new opportunities for prosperity and wellbeing but also affect our behaviors, activities, and daily lives. They enable and shape new forms of production and new working practices in sectors such as manufacturing, healthcare, logistics and supply chains, energy, and public and business services. Digital innovations are not purely technological but form part of comprehensive systemic innovations of a sociotechnical and networked nature, requiring the alignment of technology, processes, organizations, and humans. Examples are platform-based work, customer driven value creating networks, and urban public service systems. Building on widespread networking, algorithmic decisions and sharing of personal data, these innovations raise intensive societal and ethical debates regarding key issues such as data sovereignty and privacy intrusion, business models based on data surveillance and negative externalization, quality of work and jobs, and market dominance versus regulation. In this context, this book focuses on the implications of digitalization for the domain of work. The book studies the changing nature of work as well as new forms of digitally enabled organizations, work practices and cooperation. The book sheds light on the technological, economic, and political forces shaping the new world of work and on the prospects for human-centric and responsible innovations. To this end, the book brings together a number of studies in five major topics: 1. The evolution of digital technology impacting ways of working; 2. The role of artificial intelligence in new ways of working; 3. Transformation of work, jobs and employment; 4. Digitalization and need for skills and competencies; and 5. New forms of decentralized working and cooperation.
This handy book provides a single, up-to-date source of information for increasing the life of tool steels through optimized design and manufacturing. Supplying a solid understanding of the metallurgy involved, the text explains how material compositions, manufacturing processes, heat treatments, surface hardening techniques, and coatings affect tool steel properties, grades, and performance. It also explores real-life case studies and failure analyses, offering examples of die-life parameters and hints for modifying tool steels and heat treatments during cutting or forming processes. While the book offers deep coverage of properties, microstructure, and manufacturing, its focus is on describing the performance of each application of this special class of ferrous materials. Provides a single, up-to-date source of information for increasing the life of tool steels through optimized design and manufacturing. Explains how material compositions, manufacturing processes, heat treatments, surface hardening techniques, and coatings affect tool steel properties, grades, and performance. Supplies a solid understanding of the metallurgy involved in tool steel manufacturing, machining, hot and cold working, and molding. Offers examples of die-life parameters and hints for modifying tool steels and heat treatments during cutting or forming processes. Includes real-life case studies and failure analyses from the Villares Metals plant in Brazil.
The robotic mechanism and its controller make a complete system. As the robotic mechanism is reconfigured, the control system has to be adapted accordingly. The need for the reconfiguration usually arises from the changing functional requirements. This book will focus on the adaptive control of robotic manipulators to address the changed conditions. The aim of the book is to summarise and introduce the state-of-the-art technologies in the field of adaptive control of robotic manipulators in order to improve the methodologies on the adaptive control of robotic manipulators. Advances made in the past decades are described in the book, including adaptive control theories and design, and application of adaptive control to robotic manipulators.
Inland Waterway (IW), or river vessels are in every respect different from the seagoing ships. The professional literature is mostly focused on conventional seagoing fleets, leaving a gap in the documentation of design practices for IW vessels. The principal attribute that differentiates river vessels from the seagoing ships is the low, or shallow, draught due to water depth restrictions. This book addresses key aspects for the design of contemporary, shallow draught IW vessels for the transport of dry cargo (containers and bulk cargo). Most of the logic that is presented is applicable to the design of river vessels for any river, but the material that is presented is focused on vessels for the River Danube and its tributaries. The term 'contemporary river vessel' assumes that the present-day technology and current Danube river infrastructure are taken into consideration in its design. It is believed that the technologies and concepts that are proposed here are applicable for all new vessel designs for the next 10 to 15 years. Other innovative technologies should be considered for designs beyond that horizon. Moreover, nowadays contemporary IW vessel must be in harmony with the Environmentally Sustainable Transport (EST) policies and hence special attention is paid to both ecology and efficiency. Note however that shipowners and ship operators usually tend to choose the conventional cost-effective transport technologies. Given that potential divergence of interests, the concepts and technologies treated here may be regarded as innovative.
This book explicates the relationships between design thinking, critical making, and socially responsive technical communication. It leverages the recent technology-powered DIY culture called "the Maker Movement" to identify how citizen innovation can inform cutting-edge social innovation that advocates for equitable change and progress on today's "wicked" problems. After offering a succinct account of the origin and recent history of design thinking, along with its connections to the design paradigm in writing studies, the book analyzes maker culture and its influences on innovation and education through an ethnographic study of three academic makerspaces. It offers opportunities to cultivate a sense of critical changemaking in technical communication students and practitioners, showcasing examples of socially responsive innovation and expert interviews that urge a disciplinary attention to social justice advocacy and an embrace of the design-thinking principle of radical collaboration. The value of design thinking methodologies for teaching and practicing socially responsible technical communication are demonstrated as the author argues for a future in the field that sees its constituents as leaders in radical innovation to solve wicked social problems. This book is essential reading for instructors, students, and practitioners of technical communication, and can be used as a supplemental text for graduate and undergraduate courses in usability and user-centered design and research.
Engineering Science is a comprehensive textbook suitable for all vocational and pre-degree courses in engineering, being fully in line with the latest vocational courses at Level 2 and leading into Level 3. Taking a subject-led approach, engineering students will find the essential scientific principles necessary for their studies, developed topic by topic. Unlike most textbooks available for this field, it goes beyond the core science to include applications in the real world and the mechanical and electrical principles required for the majority of courses. It is supported by numerous worked examples and problems, with a complete set of answers. This new edition gives a detailed consideration of the basic arithmetic, algebraic and graphical methods needed in engineering courses so that it conforms completely with sections A and B of the BTEC Level 2 unit, and it provides the basic tools for the science that follows. A new chapter introduces the basic principles of calculus and more material is given on applications. This includes typical properties of materials and a discussion on the way properties of materials over the ages have changed the basic structures of bridges, weightlessness, snooker, thermal insulation and LEDs, as well as buildings, with a particular look at the engineering behind the collapse of the World Trade Centre.
Advances in engineering precision have tracked with technological progress for hundreds of years. Over the last few decades, precision engineering has been the specific focus of research on an international scale. The outcome of this effort has been the establishment of a broad range of engineering principles and techniques that form the foundation of precision design. Today's precision manufacturing machines and measuring instruments represent highly specialised processes that combine deterministic engineering with metrology. Spanning a broad range of technology applications, precision engineering principles frequently bring together scientific ideas drawn from mechanics, materials, optics, electronics, control, thermo-mechanics, dynamics, and software engineering. This book provides a collection of these principles in a single source. Each topic is presented at a level suitable for both undergraduate students and precision engineers in the field. Also included is a wealth of references and example problems to consolidate ideas, and help guide the interested reader to more advanced literature on specific implementations.
For over forty years, Materials for Engineers and Technicians has given thousands of students an easily accessible introduction to materials engineering and manufacturing processes. This renowned text is a comprehensive overview of the wide-ranging subject area, written in a straightforward, readable style. It is devoid of excessive jargon and mathematical complexity, and retains a practical down-to-earth approach. This expanded edition references specifications for materials and materials testing that have been updated to include European-wide standards of the EU. More applications of materials and case studies have been included. New content discusses the choice of materials and processes in relation to 3D printing and the importance of materials recycling and sustainability. The increased emphasis on the selection of materials reflects this aspect of materials engineering now seen within current vocational and university courses. In addition to meeting the requirements of vocational and undergraduate engineering syllabuses, this text also serves as a valuable desktop reference for professional engineers working in product design who require a quick source of information on materials and manufacturing processes.
Three Dimensional Weaving is a nascent technology which has triggered research interests around the world. The technology has the potential to finely balance the in-plane and out-of plane properties in composites. This state-of-the-art book focuses on three emerging 3D weaving technologies viz., Orthogonal weaving, Angle interlock weaving and Dual Plane shedding based 3D weaving. It provides focused knowledge about these technologies and has a pragmatic approach to developing customized 3D weaving machines. Fundamental approach to understanding weave design basics, thereupon practical weaving , addressing quality aspects, arriving at testing approaches are all detailed in the book. The applications for these technologies are both in strategic (space, aerospace, defense) as well as societal (medical, automobile) sectors. The book has six chapters, wherein the first three chapters are devoted to Orthogonal and angle interlock weaving and their quality control aspects. Approach to weaving preforms of complex geometries such as T-stiffeners, tapers, Origami-based structures are also discussed The fourth and fifth chapter are entirely devoted to machinery development for Dual plane shedding based 3D weaving often termed as 'True 3D weaving'. The chapters discuss detailed machine design of the sub-elements such as let-off, shedding, picking, beat-up and take-up. The reader is taken through a prototype development of a 3D weaving machine by way of concept, illustrations, practical development and weaving of samples. The sixth chapter summarises the editor's views about the technology. This volume will be beneficial to scientists and researchers in both academia and the industry.
In a presentation that formalizes what makes up decision based design, Decision Based Design defines the major concepts that go into product realization. It presents all major concepts in design decision making in an integrated way and covers the fundamentals of decision analysis in engineering design. It also trains engineers to understand the impacts of design decision. The author teaches concepts in demand modeling and customer preference modeling and provides examples. This book teaches most fundamental concepts encountered in engineering design like: concept generation, multiattribute decision analysis, reliability engineering, design optimization, simulation, and demand modeling. The book provides the tools engineering practitioners and researchers need to first understand that engineering design is best viewed as a sequence of decisions made by the stakeholders involved and then apply the decision based design concepts in practice. It teaches fundamental concepts encountered in engineering design, such as concept generation, multiattribute decision analysis, reliability engineering, design optimization, simulation, and demand modeling. This book helps students and practitioners understand that there is a rigorous way to analyze engineering decisions taking into consideration all the potential technical and business impacts of their decisions. It can be used in its entirety to teach a course in decision based design, while selected chapters can also be used to cover courses in subdisciplines that make up decision based design.
This book endeavours to highlight the untapped potential of Smart Agriculture for the innovation and expansion of the agriculture sector. The sector shall make incremental progress as it learns from associations between data over time through Artificial Intelligence, deep learning and Internet of Things applications. The farming industry and Smart agriculture develop from the stringent limits imposed by a farm's location, which in turn has a series of related effects with respect to supply chain management, food availability, biodiversity, farmers' decision-making and insurance, and environmental concerns among others. All of the above-mentioned aspects will derive substantial benefits from the implementation of a data-driven approach under the condition that the systems, tools and techniques to be used have been designed to handle the volume and variety of the data to be gathered. Contributions to this book have been solicited with the goal of uncovering the possibilities of engaging agriculture with equipped and effective profound learning algorithms. Most agricultural research centres are already adopting Internet of Things for the monitoring of a wide range of farm services, and there are significant opportunities for agriculture administration through the effective implementation of Machine Learning, Deep Learning, Big Data and IoT structures.
Additive manufacturing (AM) is a fast-growing sector with the ability to evoke a revolution in manufacturing due to its almost unlimited design freedom and its capability to produce personalised parts locally and with efficient material use. AM companies, however, still face technological challenges such as limited precision due to shrinkage, built-in stresses and limited process stability and robustness. Moreover, often post-processing is needed due to high roughness and remaining porosity. Qualified, trained personnel are also in short supply. In recent years, there have been dramatic improvements in AM design methods, process control, post-processing, material properties and material range. However, if AM is going to gain a significant market share, it must be developed into a true precision manufacturing method. The production of precision parts relies on three principles: Production is robust (i.e. all sensitive parameters can be controlled). Production is predictable (for example, the shrinkage that occurs is acceptable because it can be predicted and compensated in the design). Parts are measurable (as without metrology, accuracy, repeatability and quality assurance cannot be known). AM of metals is inherently a high-energy process with many sensitive and inter-related process parameters, making it susceptible to thermal distortions, defects and process drift. The complete modelling of these processes is beyond current computational power, and novel methods are needed to practicably predict performance and inform design. In addition, metal AM produces highly textured surfaces and complex surface features that stretch the limits of contemporary metrology. With so many factors to consider, there is a significant shortage of background material on how to inject precision into AM processes. Shortage in such material is an important barrier for a wider uptake of advanced manufacturing technologies, and a comprehensive book is thus needed. This book aims to inform the reader how to improve the precision of metal AM processes by tackling the three principles of robustness, predictability and metrology, and by developing computer-aided engineering methods that empower rather than limit AM design. Richard Leach is a professor in metrology at the University of Nottingham and heads up the Manufacturing Metrology Team. Prior to this position, he was at the National Physical Laboratory from 1990 to 2014. His primary love is instrument building, from concept to final installation, and his current interests are the dimensional measurement of precision and additive manufactured structures. His research themes include the measurement of surface topography, the development of methods for measuring 3D structures, the development of methods for controlling large surfaces to high resolution in industrial applications and the traceability of X-ray computed tomography. He is a leader of several professional societies and a visiting professor at Loughborough University and the Harbin Institute of Technology. Simone Carmignato is a professor in manufacturing engineering at the University of Padua. His main research activities are in the areas of precision manufacturing, dimensional metrology and industrial computed tomography. He is the author of books and hundreds of scientific papers, and he is an active member of leading technical and scientific societies. He has been chairman, organiser and keynote speaker for several international conferences, and received national and international awards, including the Taylor Medal from CIRP, the International Academy for Production Engineering.
Vehicles are intrinsically linked to our lives. This book covers all technical details of the vehicle electrification process, with focus on power electronics. The main challenge in vehicle electrification consists of replacing the engine-based mechanical, pneumatic, or hydraulic ancillary energy sources with electrical energy processed through an electromagnetic device. The book illustrates this evolutionary process with numerous series-production examples for either of body or chassis systems, from old milestones to futuristic luxury vehicles. Electrification of ancillaries and electric propulsion eventually meet into an all-electric vehicle and both processes rely heavily on power electronics. Power electronics deals with electronic processing of electrical energy. This makes it a support technology for the automotive industry. All the automotive visions for the next decade (2020-2030) are built on top of power electronics and the automotive power electronics industry is expected at 15% compound annual growth rate, the highest among all automotive technologies. Hence, automotive power electronics industry is very appealing for recent and future graduates. The book structure follows the architecture of the electrical power system for a conventional engine-based vehicle, with a last chapter dedicated to an introduction onto electric propulsion. The first part of the book describes automotive technologies for generation and distribution of electrical power, as well as its usage within body systems, chassis systems, or lighting. The second part explores deeper into the specifics of each component of the vehicle electric power system. Since cars have been on the streets for over 100 years, each chapter starts with a list of historical achievements. Recognizing the engineering effort span over more than a century ennobles the R&D efforts of the new millennium. Focus on history of electricity in vehicle applications is another attractive treat of the book. The book fills a gap between books targeting practical education and works sharing advanced academic vision, offering students and academics a quick tour of the basic tools and long-standing infrastructure, and offering practicing engineers an introduction on newly introduced power electronics-based technologies. It is therefore recommended as a must-have book for students and early graduates in automotive power electronics activities.
Naturebot: Unconventional Visions of Nature presents a humanities-oriented addition to the literature on biomimetics and bioinspiration, an interdisciplinary field which investigates what it means to mimic nature with technology. This technology mirrors the biodiversity of nature and it is precisely this creation of technological metaphors for the intricate workings of the natural world that is the real subject of Naturebot. Over the course of the book, Barilla applies the narrative conventions of the nature writing genre to this unconventional vision of nature, contrasting the traditional tropes and questions of natural history with an expanding menagerie of creatures that defy conventional categories of natural and artificial. In keeping with its nature writing approach, the book takes us to where we can encounter these creatures, examining the technological models and the biotic specimens that inspired them. In doing so, it contemplates the future of the human relationship to the environment, and the future of nature writing in the 21st century. This book will be of great interest to students and scholars of biomimetics, environmental literary studies/ecocriticism, and the environmental humanities.
Creating a Culture of Predictable Outcomes demonstrates the importance of creating cultures in the design and construction industries grounded in sophisticated-caring leadership, high-performing collaborative teams, and master-level decision-making discipline, informed by values, to finally address massive inefficiencies, waste, and unpredictability. Barbara White Bryson offers specific guidance to industry stakeholders to succeed in achieving project-related predictable outcomes by focusing on culture rather than process. This includes selecting the right team members by hiring and firing bravely, valuing psychological safety, leading with values, practicing respect and transparency, fostering empowerment to make decisions at the right level at the right time, and more. This book is a must-read for design and construction professionals who want to finally understand how to set goals and meet those goals for their clients as well as for their teams.
Get Ready for the Future of Additive Manufacturing Additive Manufacturing: Innovations, Advances, and Applications explores the emerging field of additive manufacturing (AM)-the use of 3D printing to make prototype parts on demand. Often referred to as the third industrial revolution, AM offers many advantages over traditional manufacturing. This process enables users to quickly build three-dimensional objects from the bottom-up, adding material one cross-sectional layer at a time directly from a computer model. This book provides a clear overview of specific technologies related to AM. It covers existing and emerging techniques in AM in use for a wide spectrum of manufacturing applications, and highlights the advantages of each technique with specific references to technological applications. Introduces Valuable Processes for Making Prototype Parts among Manufacturers of Many Types The book outlines many of the processes developed using various materials ranging from metals to plastics, and composites to human tissue. It presents recent innovations and potential viable applications that include: near-net shape capabilities, superior design, geometric flexibility, innovations in fabrication using multiple materials, and reduced tooling and fixturing. It also introduces several illustrations and case studies that focus on the present and far-reaching applications, developments, and future prospects of AM technologies. Written by renowned experts in their fields, this book: Covers the reactive inkjet printing of nylon materials relevant to AM Discusses the AM of metals using the techniques of free space deposition and selective laser melting Provides a comparison between AM materials and human tissues Addresses the use of AM for medical devices and drug and cell delivery Focuses on the relevance of AM to rare earth magnets and more Additive Manufacturing: Innovations, Advances, and Applications emphasizes the use of AM commensurate with advances in technical applications, and provides a solid background on the fundamentals and principles of this rapidly developing field.
Pressure vessels are prone to explosion while in operation, due to possible errors in material selection, design and other engineering activities. Addressing issues at hand for a working professional, this book covers material selection, testing and design of pressure vessels which enables users to effectively use code rules and available design softwares. Relevant equation derivations have been simplified with comparison to ASME codes. Analysis of special components flange, bellow and tube sheet are included with their background. Topics on tube bend, supports, thermal stresses, piping flexibility and non-pressure parts are described from structural perspective. Vibration of pressure equipment components are covered as well.
This book examines the paradigm of the engineering design process. The author discusses agile systems and engineering design. The book captures the entire design process (function bases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. Captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.
Rotary Drum: Fluid Dynamics, Dimensioning Criteria, and Industrial Applications provides in-depth analysis of fluid dynamics in rotary drums. In addition, it provides analysis on the different configurations, including nonconventional ones, diverse industrial applications, and comparison with competing dryer types, as well as the modeling of these devices. Covering important aspects of fluid dynamics in rotary drums, which directly influence the drying performance, the book also considers the significant cost of conventional rotary dryers. It takes into account the scale-up of rotary dryers and the control of product quality during processing, which can leave the final product overdried and overheated, wasting thermal energy. The book serves as a useful reference for researchers, graduate students, and engineers in the field of drying technology. |
You may like...
Emergence in Complex, Cognitive, Social…
Gianfranco Minati, Eliano Pessa
Hardcover
R4,333
Discovery Miles 43 330
Earthquakes of the Indian Subcontinent…
C P Rajendran, Kusala Rajendran
Hardcover
R3,799
Discovery Miles 37 990
International Cooperation for Enhancing…
Luciano Maiani, Said Abousahl, …
Hardcover
R3,214
Discovery Miles 32 140
Air Insulation Prediction Theory and…
Zhibin Qiu, Jiangjun Ruan, …
Hardcover
R2,660
Discovery Miles 26 600
Power Maths 2nd Edition Practice Book 4C
Tony Staneff, Josh Lury
Paperback
R111
Discovery Miles 1 110
Handbook of Entrepreneurial Cognition
J. Robert Mitchell, Ronald K Mitchell, …
Paperback
R1,563
Discovery Miles 15 630
|