![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Technology: general issues > Technical design > General
A unique presentation of two key elements of structural design Both damage tolerant design and nondestructive inspection are essential for achieving structural integrity, yet these interrelated disciplines are generally studied independently and implemented by different individuals within an organization. Fundamentals of Structural Integrity is an unparalleled presentation of both of these technologies in a single volume that points out the many interconnected details that must function in concert to assure the prevention of structural failures. This groundbreaking volume introduces the concept of structural integrity and explains how it is achieved. It provides examples of threats to structural integrity, reviews structural certification policies, and presents detailed coverage of damage tolerant design procedures and nondestructive inspection methods. Outstanding features of this comprehensive guide include:
Fundamentals of Structural Integrity is an indispensable resource for mechanical, materials, civil, and aerospace engineers charged with researching, designing, or maintaining safe operation of high-performance structures.
This book contains the papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2018), held on 20-22 June 2018 in Cartagena, Spain. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into six main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed, and future interdisciplinary collaborations.
Reliability methods are becoming increasingly popular in engineering design because they help build safer and more efficient products than traditional deterministic methods. A principal challenge in using these methods in practical design problems is to model uncertainty when little data is available and the underlying mechanism of uncertain events is unknown. There is a need for an integrated presentation of tools for modeling uncertainty and making design decisions under severe uncertainty, which bridges the gap between theory and practice for methods for design under uncertainty. This work presents and compare the most important theories for modeling uncertainty and explains what tools are most suitable for a given design problem. It illustrates how to solve practical design problems in the aerospace and automotive engineering industries with a balanced approach explaining both the theoretical foundations of methods and their application to engineering design. The numerous examples in each section will help to appreciate the importance of design under uncertainty and the theoretical developments of the methods. Readers will learn a structured, risk-based approach for design under uncertainty when limited information is available, which tools are available and which to select and apply given a design decision problem. They will further understand how to improve their overall performance using a structured, risk-based approach for design under uncertainty. Intended for mechanical and civil engineers working in aerospace, automotive, civil, shipbuilding and power engineering, and for graduate level courses and students in reliability analysis and design and decision-making under uncertainty.
In today's sophisticated world, reliability stands as the
ultimate arbiter of quality. An understanding of reliability and
the ultimate compromise of failure is essential for determining the
value of most modern products and absolutely critical to others,
large or small. Whether lives are dependent on the performance of a
heat shield or a chip in a lab, random failure is never an
acceptable outcome. Dependable Products Are No Accident: A Clear Path to the
Creation of Consistently Reliable Products
This open access book reports on innovative methods, technologies and strategies for mastering uncertainty in technical systems. Despite the fact that current research on uncertainty is mainly focusing on uncertainty quantification and analysis, this book gives emphasis to innovative ways to master uncertainty in engineering design, production and product usage alike. It gathers authoritative contributions by more than 30 scientists reporting on years of research in the areas of engineering, applied mathematics and law, thus offering a timely, comprehensive and multidisciplinary account of theories and methods for quantifying data, model and structural uncertainty, and of fundamental strategies for mastering uncertainty. It covers key concepts such as robustness, flexibility and resilience in detail. All the described methods, technologies and strategies have been validated with the help of three technical systems, i.e. the Modular Active Spring-Damper System, the Active Air Spring and the 3D Servo Press, which have been in turn developed and tested during more than ten years of cooperative research. Overall, this book offers a timely, practice-oriented reference guide to graduate students, researchers and professionals dealing with uncertainty in the broad field of mechanical engineering.
Knowledge creation and technological experiences resulting from modern production life cycles are definitely the most Economical and important intellectual capitals in the current manufacturing endeavors. These are also the basis for enabling industrial competition through managing and identifying organizational and product related needs and opportunities; e. g. health care systems society needs clean environment, sustainable production life cycles needs flexible approachable design and engineering of materials whilst valuable materials are needed for renewable energies and the production of fuel cells. Integration of components, design of structures and managing knowledge inherent in engineering is a difficult and complex endeavor. A wide range of advanced technologies such as smart materials and their approaches in alternative energy have to be invoked in providing assistance for knowledge requirements ranging from acquisition, modeling, (re)using, retrieving, sharing, publishing and maintaining of knowledge. Integration, Design and management with regards to knowledge management originates at least on three roots.
This co-edited volume compares Chinese and Western experiences of engineering, technology, and development. In doing so, it builds a bridge between the East and West and advances a dialogue in the philosophy of engineering. Divided into three parts, the book starts with studies on epistemological and ontological issues, with a special focus on engineering design, creativity, management, feasibility, and sustainability. Part II considers relationships between the history and philosophy of engineering, and includes a general argument for the necessity of dialogue between history and philosophy. It continues with a general introduction to traditional Chinese attitudes toward engineering and technology, and philosophical case studies of the Chinese steel industry, railroads, and cybernetics in the Soviet Union. Part III focuses on engineering, ethics, and society, with chapters on engineering education and practice in China and the West. The book's analyses of the interactions of science, engineering, ethics, politics, and policy in different societal contexts are of special interest. The volume as a whole marks a new stage in the emergence of the philosophy of engineering as a new regionalization of philosophy. This carefully edited interdisciplinary volume grew out of an international conference on the philosophy of engineering hosted by the University of the Chinese Academy of Sciences in Beijing. It includes 30 contributions by leading philosophers, social scientists, and engineers from Australia, China, Europe, and the United States.
These proceedings present the latest information on regulations and standards for medical and non-medical devices, including wearable robots for gait training and support, design of exoskeletons for the elderly, innovations in assistive robotics, and analysis of human-machine interactions taking into account ergonomic considerations. The rapid development of key mechatronics technologies in recent years has shown that human living standards have significantly improved, and the International Conference on Wearable Sensor and Robot was held in Hangzhou, China from October 16 to 18, 2015, to present research mainly focused on personal-care robots and medical devices. The aim of the conference was to bring together academics, researchers, engineers and students from across the world to discuss state-of-the-art technologies related to various aspects of wearable sensors and robots.
Climbing robot is a challenging research topic that has gained much attention from researchers. Most of the robots reported in the literature are designed to climb on manmade structures, but seldom robots are designed for climbing natural environment such as trees. Trees and manmade structures are very different in nature. It brings different aspects of technical challenges to the robot design. In this book, you can find a collection of the cutting edge technologies in the field of tree-climbing robot and the ways that animals climb. It provides a valuable reference for robot designers to select appropriate climbing methods in designing tree-climbing robots for specific purposes. Based on the study, a novel bio-inspired tree-climbing robot with several breakthrough performances has been developed and presents in this book. It is capable of performing various actions that is impossible in the state-of-the-art tree-climbing robots, such as moving between trunk and branches. This book also proposes several approaches in autonomous tree-climbing, including the sensing methodology, cognition of the environment, path planning and motion planning on both known and unknown environment.
There is considerable interest in and growing recognition of the
emotional domain in product development. The relationship between
the user and the product is paramount in industry, which has led to
major research investments in this area.
The Language of Design: Theory and Computation articulates the theory that there is a language of design. This theory claims that any language of design consists of a set of symbols, a set of relations between the symbols, features that key the expressiveness of symbols, and a set of reality producing information processing behaviors acting on the language. Drawing upon insights from computational language processing, the language of design is modeled computationally through latent semantic analysis (LSA), lexical chain analysis (LCA), and sentiment analysis (SA). The statistical co-occurrence of semantics (LSA), semantic relations (LCA), and semantic modifiers (SA) in design text are used to illustrate how the reality producing effect of language is itself an enactment of design. This insight leads to a new understanding of the connections between creative behaviors such as design and their linguistic properties. The computation of the language of design makes it possible to make direct measurements of creative behaviors which are distributed across social spaces and mediated through language. The book demonstrates how machine understanding of design texts based on computation over the language of design yields practical applications for design management such as modeling teamwork, characterizing the formation of a design concept, and understanding design rationale. The Language of Design: Theory and Computation is a unique text for postgraduates and researchers studying design theory and management, and allied disciplines such as artificial intelligence, organizational behavior, and human factors and ergonomics.
Describing NDE issues associated with real-world applications, this comprehensive book details conventional and forthcoming NDE technologies. It instructs on current practices, common techniques and equipment applications, and the potentials and limitations of current NDE methods. Each chapter details a different method, providing an overview, an explanation of the fundamental physical laws governing the method, the inspection techniques and typical equipment used in it's application, final system integration of transducers, supporting instrumentation, commonly practiced procedures necessary for viable NDE inspection, examples of how the method can be applied, and end-of-chapter problems.
This book discusses how human-centered principles and methods can be applied to improve the design of policies and projects to increase positive impacts for beneficiaries. The basic premise of human-centered design is to put beneficiaries at the heart of the design process. For policies and projects, a human-centered design approach can benefit people's lives by contributing to a deeper understanding of their challenges, aspirations, and dreams. Part 1 of the book discusses principles and methods for human-centered design and features real-world practical examples. Part 2 presents a case study on Indonesia's maritime sector to demonstrate the benefits.
Within the past twenty years, the field of robotics has been finding many areas of applications ranging from space to underwater explo rations. One of these areas which is slowly gaining popularity among the users group is the notion of service robotics. This book is an in vestigation and exploration of engineering principles in the design and development of mechanisms and robotic devices that can be used in the field of surgery. Specifically the results of this book can be used for designing tools for class of Minimally Invasive Surgery (MIS). Generally, Minimal Invasive Surgery (MIS), e. g. laparoscopic surgery, is performed by using long surgical tools, that are inserted through small incisions at the ports of entry to the body (e. g. abdominal wall) for reaching the surgical site. The main drawback of current designs of en doscopic tools is that they are not able to extend all the movements and sensory capabilities of the surgeon's hand to the surgical site. By im proving surgical procedures, training, and more practice, it is possible for surgeons to reduce completion time for each task and increase their level of skill. However, even in the best cases the level of performance of a surgeon in Minimally Invasive Surgery is still a fraction of the con ventional surgery. Any dramatically improvement is usually driven by introduction of new tools or systems that in turn bring totally new pro cedures and set of skills."
The importance of design has often been neglected in studies considering the history of structural and civil engineering. Yet design is a key aspect of all building and engineering work. This volume brings together a range of articles which focus on the role of design in engineering. It opens by considering the principles of design, then deals with the application of these to particular subjects including bridges, canals, dams and buildings (from Gothic cathedrals to Victorian mills) constructed using masonry, timber, cast and wrought iron.
This book provides insights into the possibilities, realities and challenges of the rapidly evolving world of 3D printing or additive manufacturing. Contributors cover the applications for 3D printing, available materials, research, and the business of additive manufacturing from start-ups to Fortune 500 companies. As an important part of the Women in Science and Engineering book series, the work highlights the contribution of women leaders in additive manufacturing, inspiring women and men, girls and boys to enter and apply themselves to world of 3D printing and be a part of bringing the true potential of 3D printing to fruition. The book features contributions of prominent female engineers, scientists, business and technology leaders in additive manufacturing from academia, industry and government labs. Provides insight into women's contributions to the field of additive manufacturing; Presents information from academia, research, government labs and industry into advances and applications in the rapidly evolving and growing field of 3D printing; Includes applications in industries such as medicine, aerospace, and automotive.
Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 2: Advanced Internal Combustion Engines (II) focuses on: *Flow and Combustion Diagnosis *Engine Design and Simulation *Heat Transfer and Waste Heat Reutilization *Emission Standard and International Regulations Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.
7. 1. 1 Background Uncertainty can be considered as the lack of adequate information to make a decision. It is important to quantify uncertainties in mathematical models used for design and optimization of nondeterministic engineering systems. In general, - certainty can be broadly classi?ed into three types (Bae et al. 2004; Ha-Rok 2004; Klir and Wierman 1998; Oberkampf and Helton 2002; Sentz 2002). The ?rst one is aleatory uncertainty (also referred to as stochastic uncertainty or inherent - certainty) - it results from the fact that a system can behave in random ways. For example, the failure of an engine can be modeled as an aleatory uncertaintybecause the failure can occur at a random time. One cannot predict exactly when the engine will fail even if a large quantity of failure data is gathered (available). The second one is epistemic uncertainty (also known as subjective uncertainty or reducible - certainty) - it is the uncertainty of the outcome of some random event due to lack of knowledge or information in any phase or activity of the modeling process. By gaining information about the system or environmental factors, one can reduce the epistemic uncertainty. For example, a lack of experimental data to characterize new materials and processes leads to epistemic uncertainty.
Since the 1970's, an increasing amount of specialized research has focused on the problems created by instability of internal flow in hydroelectric power plants. However, progress in this field is hampered by the inter disciplinary nature of the subject, between fluid mechanics, structural mechanics and hydraulic transients. Flow-induced Pulsation and Vibration in Hydroelectric Machinery provides a compact guidebook explaining the many different underlying physical mechanisms and their possible effects. Typical phenomena are described to assist in the proper diagnosis of problems and various key strategies for solution are compared and considered with support from practical experience and real-life examples. The link between state-of the-art CFD computation and notorious practical problems is discussed and quantitative data is provided on normal levels of vibration and pulsation so realistic limits can be set for future projects. Current projects are also addressed as the possibilities and limitations of reduced-scale model tests for prediction of prototype performance are explained. Engineers and project planners struggling with the practical problems will find Flow-induced Pulsation and Vibration in Hydroelectric Machinery to be a comprehensive and convenient reference covering key topics and ideas across a range of relevant disciplines.
Road Vehicle Dynamics: Fundamentals and Modeling with MATLAB (R), Second Edition combines coverage of vehicle dynamics concepts with MATLAB v9.4 programming routines and results, along with examples and numerous chapter exercises. Improved and updated, the revised text offers new coverage of active safety systems, rear wheel steering, race car suspension systems, airsprings, four-wheel drive, mechatronics, and other topics. Based on the lead author's extensive lectures, classes, and research activities, this unique text provides readers with insights into the computer-based modeling of automobiles and other ground vehicles. Instructor resources, including problem solutions, are available from the publisher.
The goal of the world class company is to produce a product or service that offers customers the highest quality at the lowest cost and in the shortest time possible. "Product Design Review" describes a highly effective method for quality control in product design, as well as its applications in a wide variety of business settings. Take care of the problems that erupt during product development by nipping them in the bud (during the design stage). Takashi Ichida describes a powerful tool insuring quality at concept stage, thereby eliminating redesign, retooling, rework, and error throughout the production process. The program he describes can be carried out through every phase of new product development - - from product planning to design, production, and marketing. Also explains how you can incorporate your customer feedback into the next production cycle. You'll always need to modify any process improvement technology to suit your company's culture, product type, manufacturing approach, and customer needs. "Product Design Review" has taken case studies from a cross section of industries and describes each company's unique application of Ichida's process. You'll not only see the tremendous results these companies have achieved by using Design Review, but you'll also see the difficulties they've encountered. Also included are five essays that compare Design Review with other innovations in manufacturing process such as artificial intelligence, checklists, quality function deployment (QFD), design of experiments (DOE), and configuration control.
xiv box for Balanced Automation, research in this area is still young and emerging. In our opinion, the development of hybrid balanced solutions to cope with a variety of automation levels and manual approaches, is a much more challenging research problem than the search for a purely automatic solution. Various research activities described in this book illustrate some of these challenges through the development proposals, assisting tools, and initial results. In certain chapters however, the balancing aspects are not yet achieved in the research area, but their inclusion in this book is intended to give a broader and more comprehensive perspective of the multiple areas involved. One important aspect to be noticed is the extension and application of the concept of balanced automation to all areas of the manufacturing enterprise. Clearly, the need for a "balanced" approach is not restricted to the shop floor components, rather it applies to all other areas, as illustrated by the wide spectrum of research contributions found in this book. For instance, the need for an appropriate integration of multiple systems and their perspectives is particularly important for the implantation of virtual enterprises. Although both the BASYS'95 and the BASYS'96 conferences have provided important contributions, approaches, and tools for the implantation of balanced automation systems, there are a number of areas that require further research: .
Get up to speed with this robust introduction to the aerothermodynamics principles underpinning jet propulsion, and learn how to apply these principles to jet engine components. Suitable for undergraduate students in aerospace and mechanical engineering, and for professional engineers working in jet propulsion, this textbook includes consistent emphasis on fundamental phenomena and key governing equations, providing students with a solid theoretical grounding on which to build practical understanding; clear derivations from first principles, enabling students to follow the reasoning behind key assumptions and decisions, and successfully apply these approaches to new problems; practical examples grounded in real-world jet propulsion scenarios illustrate new concepts throughout the book, giving students an early introduction to jet and rocket engine considerations; and online materials for course instructors, including solutions, figures, and software resources, to enhance student teaching.
The EUCOMES08, Second European Conference on Mechanism Science is the second event of a series that has been started in 2006 as a conference activity for an European community working in Mechanism Science. The ?rst event was held in Obergurgl, Austria in 2006. This year EUCOMES08 Conference has come to Cassino in Italy taking place from 17 to 20 September 2008. TheaimoftheEUCOMESConference istobringtogetherEuropean researchers, industry professionals and students from the broad ranges of disciplines referring to Mechanism Science, in an intimate, collegial and stimulating environment. In this second event we have received an increased attention to the initiative, as canbeseenbythefactthattheEUCOMES08Proceedingswillcontaincontributions by authors even from all around the world. This means also that there is a really interest to have not only a conference frame but even a need of aggregation for an European Community well identi?ed in Mechanism Science with the aim to strengthen common views and collaboration activities among European researchers and institutions. I believe that a reader will take advantage of the papers in these Proceedings with further satisfaction and motivation for her or his work. These papers cover the wide ?eld of the Mechanism Science. The program of EUCOMES08 Conference has included technical sessions with oral presentations, which, together with informal conversations during the social program, have enabled to offer wide opportunities to share experiences and discuss scienti?c achievements and current trends in the areas encompassed by the EUCOMES08 conference. |
You may like...
Seeking Stillness or The Sound of Wings
Hector Acero Ferrer, Michael De Moor, …
Hardcover
Solitary Refinement - Chromatics, Chords…
Nadina Mackie Jackson
Hardcover
R1,205
Discovery Miles 12 050
Anatomy of a Tapestry: Techniques…
Jean Pierre Larochette, Yadin Larochette
Spiral bound
|