![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Technical design > General
Author Keith L. Richards believes that design engineers spend only a small fraction of time actually designing and drawing, and the remainder of their time finding relevant design information for a specific method or problem. He draws on his own experience as a mechanical engineering designer to offer assistance to other practicing and student engineers facing the same struggle. Design Engineer's Reference Guide: Mathematics, Mechanics, and Thermodynamics provides engineers with a roadmap for navigating through common situations or dilemmas. This book starts off by introducing reference information on the coverage of differential and integral calculus, Laplace's transforms, determinants, and matrices. It provides a numerical analysis on numerical methods of integration, Newton-Raphson's methods, the Jacobi iterative method, and the Gauss-Seidel method. It also contains reference information, as well as examples and illustrations that reinforce the topics of most chapter subjects. A companion to the Design Engineer's Handbook and Design Engineer's Case Studies and Examples, this textbook covers a range of basic engineering concepts and common applications including: * Mathematics * Numerical analysis * Statics and kinematics * Mechanical vibrations * Control system modeling * Basic thermodynamics * Fluid mechanics and linkages An entry-level text for students needing to understand the underlying principles before progressing to a more advanced level, Design Engineer's Reference Guide: Mathematics, Mechanics, and Thermodynamics is also a basic reference for mechanical, manufacturing, and design engineers.
A commonly used practice in industry is the machining of sculptured part surfaces on a multiaxis numerical control (NC) machine. While this practice is vital, it is also a costly aspect of the surface generation process. After investing more than 40 years of research into the theory of part surface generation, the author of Generation of Surfaces: Kinematic Geometry of Surface Machining considers an approach that provides optimal machining while factoring in the lowest possible cost. This book presents the modern theory of part surface generation with a focus on kinematic geometry of part surface machining on a multiaxis (NC) machine, and introduces key methods for applying the DG/K-based approach to part surface generation. The DG/K approach is based on the results of research found in two main areas: differential geometry (DG) of surfaces, and kinematics (K) of rigid body in three-dimensional Euclidian space E3. It is an extremely powerful tool for solving a plurality of problems in mechanical/manufacturing engineering. The text is presented in three parts: the basics, the fundamentals, and applications of part surface generation. The first part of the book provides an analytical description of part surfaces, details the principal elements of the theory of multiparametric motion of a rigid body in E3 space, and defines applied coordinate systems. The second half introduces the theory of part surface generation, and includes an analytical description of contact geometry, while the final portion illustrates the potential development of highly effective part surface generation methods. The author illustrates the most complex features of the book with examples, explains all of the results of analysis mathematically, and uses just one set of input parameters-the design parameters of the part surface to be machined. The book considers practical applications for part surface machining and cutting tool design. Developed for use with computer-aided design (CAD) and computer-aided machining (CAM), this text is useful for anyone starting work on new software packages for sculptured part surface machining on a multiaxis NC machine.
In the field of mechanism design, kinematic synthesis is a creative means to produce mechanism solutions. Combined with the emergence of powerful personal computers, mathematical analysis software and the development of quantitative methods for kinematic synthesis, there is an endless variety of possible mechanism solutions that users are free to explore, realize, and evaluate for any given problem in an efficient and practical manner. Mechanism Design: Visual and Programmable Approaches provides a broad introduction to kinematic synthesis, presenting and applying motion, path, and function generation methodologies for some of the most basic planar and spatial single and multi-loop linkage systems. This work provides numerous in-chapter synthesis examples and end-of-chapter synthesis problems. Users can also invent their own specialized synthesis problems according to their particular interests. The commercial mathematical software package MATLAB (R) and its mechanical system modeling and simulation module SimMechanics (R) are thoroughly integrated in this textbook for mechanism synthesis and analysis. The reader is therefore enabled to readily apply the design approaches presented in this textbook to synthesize mechanism systems and visualize their results. With this knowledge of both kinematic synthesis theory and computer-based application, readers will be well-equipped to invent novel mechanical system designs for a wide range of applications.
This book explicates the relationships between design thinking, critical making, and socially responsive technical communication. It leverages the recent technology-powered DIY culture called "the Maker Movement" to identify how citizen innovation can inform cutting-edge social innovation that advocates for equitable change and progress on today's "wicked" problems. After offering a succinct account of the origin and recent history of design thinking, along with its connections to the design paradigm in writing studies, the book analyzes maker culture and its influences on innovation and education through an ethnographic study of three academic makerspaces. It offers opportunities to cultivate a sense of critical changemaking in technical communication students and practitioners, showcasing examples of socially responsive innovation and expert interviews that urge a disciplinary attention to social justice advocacy and an embrace of the design-thinking principle of radical collaboration. The value of design thinking methodologies for teaching and practicing socially responsible technical communication are demonstrated as the author argues for a future in the field that sees its constituents as leaders in radical innovation to solve wicked social problems. This book is essential reading for instructors, students, and practitioners of technical communication, and can be used as a supplemental text for graduate and undergraduate courses in usability and user-centered design and research.
This volume represents the proceedings of the 2013 International Conference on Innovation, Communication and Engineering (ICICE 2013). This conference was organized by the China University of Petroleum (Huadong/East China) and the Taiwanese Institute of Knowledge Innovation, and was held in Qingdao, Shandong, P.R. China, October 26 - November 1, 2013. The conference received 653 submitted papers from 10 countries, of which 214 papers were selected by the committees to be presented at ICICE 2013. The conference provided a unified communication platform for researchers in a wide range of fields from information technology, communication science, and applied mathematics, to computer science, advanced material science, design and engineering. This volume enables interdisciplinary collaboration between science and engineering technologists in academia and industry as well as networking internationally. Consists of a book of abstracts (260 pp.) and a USB flash card with full papers (912 pp.).
Whether it is the effects of climate change, the avalanche of electronic and plastic waste or the substandard living and working conditions of billions of our fellow global citizens, our ability to deal with unsustainability will define the twenty-first century. Given that most consumption is mediated through products and services, the critical question for designers is: How can we radically reshape these into tools for sustainable living? As a guide and reference text, Product Design and Sustainability provides design students, practitioners and educators with the breadth and depth needed to integrate the most appropriate sustainable strategies into their practice. It establishes the principles that underpin sustainability and introduces a diverse range of social, economic and environmental design responses and tools available to designers. The numerous real-world examples illustrate how these strategies play out in different product sectors and reinforce the view that sustainability is the most positive opportunity and creative challenge facing designers today. This book: delivers a comprehensive guide to the principles of sustainability and how they apply to product design that can readily be integrated into curricula and design practice reveals many of the issues specific product sectors are facing, and provides the depth and breadth needed for formulating and developing sustainable design strategies to address these issues empowers and inspires designers to engage with sustainability through its many examples and insightful interviews with practitioners is fully illustrated with over 300 photographs, graphs and diagrams and supported by chapter summaries, annotated further reading suggestions, and a glossary.
Today, digital technologies represent an absolute must when it comes to creating new products and factories. However, day-to-day product development and manufacturing engineering operations have still only unlocked roughly fifty percent of the "digital potential". The question is why? This book provides compelling answers and remedies to that question. Its goal is to identify the main strengths and weaknesses of today's set-up for digital engineering working solutions, and to outline important trends and developments for the future. The book concentrates on explaining the critical basics of the individual technologies, before going into deeper analysis of the virtual solution interdependencies and guidelines on how to best align them for productive deployment in industrial and collaborative networks. Moreover, it addresses the changes needed in both, technical and management skills, in order to avoid fundamental breakdowns in running information technologies for virtual product creation in the future.
The book describes state-of-the-art product service systems, and provides a framework to categorize the knowledge surrounding these systems. It discusses the evolution and spread of the servitization model across industries, and explores its current and most relevant applications in industry. Further, the book highlights the model's strategic value for business and management, operations, and sustainability and shows readers how to enhance service design and implementation. The contributors provide the theory behind servitization as well as the evidence for it, and report practical and industrial lessons learned. Illustrations, charts, and tables effectively guide readers through real-world and potential applications of product service systems, and case studies describing how companies have innovated and developed award winning business models are also included. Moreover, the book exhibits the selection and implementation policies for product service systems in different industrial environments. Providing comprehensive information on the product service system phenomenon, this book is essential reading for researchers and practitioners in the product service and business industries. It is also of interest to students and lecturers in business strategy and service management, as it shows the latest trends shaping the modern contexts in which companies operate.
This open access book reports on innovative methods, technologies and strategies for mastering uncertainty in technical systems. Despite the fact that current research on uncertainty is mainly focusing on uncertainty quantification and analysis, this book gives emphasis to innovative ways to master uncertainty in engineering design, production and product usage alike. It gathers authoritative contributions by more than 30 scientists reporting on years of research in the areas of engineering, applied mathematics and law, thus offering a timely, comprehensive and multidisciplinary account of theories and methods for quantifying data, model and structural uncertainty, and of fundamental strategies for mastering uncertainty. It covers key concepts such as robustness, flexibility and resilience in detail. All the described methods, technologies and strategies have been validated with the help of three technical systems, i.e. the Modular Active Spring-Damper System, the Active Air Spring and the 3D Servo Press, which have been in turn developed and tested during more than ten years of cooperative research. Overall, this book offers a timely, practice-oriented reference guide to graduate students, researchers and professionals dealing with uncertainty in the broad field of mechanical engineering.
Engineering Science is a comprehensive textbook suitable for all vocational and pre-degree courses in engineering, being fully in line with the latest vocational courses at Level 2 and leading into Level 3. Taking a subject-led approach, engineering students will find the essential scientific principles necessary for their studies, developed topic by topic. Unlike most textbooks available for this field, it goes beyond the core science to include applications in the real world and the mechanical and electrical principles required for the majority of courses. It is supported by numerous worked examples and problems, with a complete set of answers. This new edition gives a detailed consideration of the basic arithmetic, algebraic and graphical methods needed in engineering courses so that it conforms completely with sections A and B of the BTEC Level 2 unit, and it provides the basic tools for the science that follows. A new chapter introduces the basic principles of calculus and more material is given on applications. This includes typical properties of materials and a discussion on the way properties of materials over the ages have changed the basic structures of bridges, weightlessness, snooker, thermal insulation and LEDs, as well as buildings, with a particular look at the engineering behind the collapse of the World Trade Centre.
The first book to focus on jumping genes outside bioscience and medicine, Multiobjective Optimization Methodology: A Jumping Gene Approach introduces jumping gene algorithms designed to supply adequate, viable solutions to multiobjective problems quickly and with low computational cost. Better Convergence and a Wider Spread of Nondominated Solutions The book begins with a thorough review of state-of-the-art multiobjective optimization techniques. For readers who may not be familiar with the bioscience behind the jumping gene, it then outlines the basic biological gene transposition process and explains the translation of the copy-and-paste and cut-and-paste operations into a computable language. To justify the scientific standing of the jumping genes algorithms, the book provides rigorous mathematical derivations of the jumping genes operations based on schema theory. It also discusses a number of convergence and diversity performance metrics for measuring the usefulness of the algorithms. Practical Applications of Jumping Gene Algorithms Three practical engineering applications showcase the effectiveness of the jumping gene algorithms in terms of the crucial trade-off between convergence and diversity. The examples deal with the placement of radio-to-fiber repeaters in wireless local-loop systems, the management of resources in WCDMA systems, and the placement of base stations in wireless local-area networks. Offering insight into multiobjective optimization, the authors show how jumping gene algorithms are a useful addition to existing evolutionary algorithms, particularly to obtain quick convergence solutions and solutions to outliers.
This book contains the papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2018), held on 20-22 June 2018 in Cartagena, Spain. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into six main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed, and future interdisciplinary collaborations.
Designers of technology have a major responsibility in the current age. Their designs can have tremendous effects on society, in both the short and the long term. In fact, sustainable development itself has all the characteristics of a design project, albeit a vast one. But a failed product design here will be not just be unsuccessful in the market - it will have far-reaching consequences. It is our common responsibility to make the project successful. Technology has played an important role in creating the problems that we now face; but it will also play an important role in solving them. But this does not mean the technological fix will be easy. How do we allocate resources and attention when there are myriad issues under the umbrella of "sustainable development" currently in competition with one another? How do we arrive at precise specifications for the sustainable technologies that are to be developed and, furthermore, reach consensus on these specifications? What if our sustainable technological solutions aggravate other problems or create new ones? And, because sustainable development is all about the long-term consequences of our actions, how do we assess the effects of modifying existing landscapes, infrastructures and patterns of life?How could we be sure in advance that the changes that new technologies bring will make our society more sustainable? These dilemmas and paradoxes are the subject of this provocative book. Sometimes the claim that a technology is sustainable is made in order to make the technology acceptable in the political process, as in the case of nuclear energy production, where the claims of "sustainability" refer to the absence of CO2 emissions. In the case of biofuels, claims of sustainability have led to a "fuel or food" debate, showing that sustainability has counteracting articulations. And the well-known rebound effect is observed when increased resource efficiency can create a stimulus for consumption. What is Sustainable Technology? illustrates that the sustainability impact of a technology is often much more complicated and ambivalent than one might expect. Making improvements to existing designs is not the technological challenge that will lead to real solutions. We mustn't look to change a part of a machine, but rather the machine as a whole - or even the whole system in which it functions. It is these system innovations that have the potential to make a genuine contribution to sustainable development. What is Sustainable Technology? will help all those involved in designing more sustainable technologies in determining their strategies. It does so by presenting case studies of different technologies in contrasting contexts. Each case asks: 1. What articulations of sustainability played a role in the design process? 2. What sustainability effects did this technology lead to? 3. Who was affected, where, and when? 4. Could the designer have foreseen these consequences? 5. How did the designer anticipate them? 6. How was societal interaction dealt with during the design process? Finally, the authors reflect on future options for the sustainable technology designer. They argue that an important first step is an awareness of the multitude of sustainable development challenges that play a role in production, use, recycling and end-of-life disposal. What is Sustainable Technology? will be essential reading for product designers, engineers, material scientists and others involved in the development of sustainable technologies, as well as a wide academic audience interested in the complexities of the sustainable design process.
Designed as a supplement to the unparalleled and traditional engineering textbooks written by "the maestro" Prof. Giovannozzi, this review of the notes and lessons crucial to Machine Construction courses and Industrial Engineering students allows for the utmost comprehension of the subject matter at a decrease in study time, an important contribution given the requirements of the new teaching regulations. This long-sought collection of notes helps students get the most out of the texts, supporting them above all in those areas where, by experience, they have the most difficulty. Beginning with current training needs, Mechanical Design reinforces the fundamentals of the design of mechanical components. It employs an analytical approach to the subjects based on algorithms from traditional calculus without extensive reference to more current methodologies. This gives students of the ability to use simple models and calculations that are reliably effective and helpful at times when more complicated algorithms or well-known commercial programs need to be used. Emphasizing logical and analytical thinking, students start by analyzing the physical problem with the most appropriate schematic and end with a constructional definition of the component in need of planning. Typical Machine Construction course subjects/modules occupy the greater part of this book (mechanical system component planning), but two preliminary sections enhance its appeal: the methodological set-up of the project (traditional or more recent developments), and the project criteria that take into account environmental concerns. To comply with the requirements of the new teaching regulations, the principal materials tests and simple stress states are outlined prior to the study of fatigue, which refers to fine-tuning methods developed at Catania's Faculty of Engineering. Two useful appendices group tables of the general properties of metallic materials, and there are various applications whose theoretical methods and tools are applied to the planning of real mechanical systems.
Reliability methods are becoming increasingly popular in engineering design because they help build safer and more efficient products than traditional deterministic methods. A principal challenge in using these methods in practical design problems is to model uncertainty when little data is available and the underlying mechanism of uncertain events is unknown. There is a need for an integrated presentation of tools for modeling uncertainty and making design decisions under severe uncertainty, which bridges the gap between theory and practice for methods for design under uncertainty. This work presents and compare the most important theories for modeling uncertainty and explains what tools are most suitable for a given design problem. It illustrates how to solve practical design problems in the aerospace and automotive engineering industries with a balanced approach explaining both the theoretical foundations of methods and their application to engineering design. The numerous examples in each section will help to appreciate the importance of design under uncertainty and the theoretical developments of the methods. Readers will learn a structured, risk-based approach for design under uncertainty when limited information is available, which tools are available and which to select and apply given a design decision problem. They will further understand how to improve their overall performance using a structured, risk-based approach for design under uncertainty. Intended for mechanical and civil engineers working in aerospace, automotive, civil, shipbuilding and power engineering, and for graduate level courses and students in reliability analysis and design and decision-making under uncertainty.
"Optimal Design of Complex Mechanical Systems" presents the foundations and practical application of multi-objective optimization methods to Vehicle Design Problems with an extensive overview of examples. The first part provides an introduction and a general theoretical information about the optimization of complex mechanical systems and multi-objective optimization methods. Several presented applications such as the global approximation approach are brand new in literature and extensively exposed the first time in this book. The second Part of the book shows some examples of the application of the proposed methods to the solution of real vehicle design problems.
In today's sophisticated world, reliability stands as the
ultimate arbiter of quality. An understanding of reliability and
the ultimate compromise of failure is essential for determining the
value of most modern products and absolutely critical to others,
large or small. Whether lives are dependent on the performance of a
heat shield or a chip in a lab, random failure is never an
acceptable outcome. Dependable Products Are No Accident: A Clear Path to the
Creation of Consistently Reliable Products
Designing engineering products - technical systems and/or transformation processes - requires a range of information, know-how, experience, and engineering analysis, to find an optimal solution. Creativity and open-mindedness can be greatly assisted by systematic design engineering, which will ultimately lead to improved outcomes, documentation, and management. This book applies systematic and methodical conceptualization to abstract models of engineering systems. These can be be used as needed for developing candidate solutions. The recommended engineering design process should be able to support all levels of creative design engineering based on Engineering Design Science. This book, incorporating several new insights, surveys information about systematic, methodical, and intuitive design engineering, thinking, and reasoning, as well as progressive product development. In addition to providing practical approaches it helps readers better understand the role of engineering in society.
This book discusses how human-centered principles and methods can be applied to improve the design of policies and projects to increase positive impacts for beneficiaries. The basic premise of human-centered design is to put beneficiaries at the heart of the design process. For policies and projects, a human-centered design approach can benefit people's lives by contributing to a deeper understanding of their challenges, aspirations, and dreams. Part 1 of the book discusses principles and methods for human-centered design and features real-world practical examples. Part 2 presents a case study on Indonesia's maritime sector to demonstrate the benefits.
Knowledge creation and technological experiences resulting from modern production life cycles are definitely the most Economical and important intellectual capitals in the current manufacturing endeavors. These are also the basis for enabling industrial competition through managing and identifying organizational and product related needs and opportunities; e. g. health care systems society needs clean environment, sustainable production life cycles needs flexible approachable design and engineering of materials whilst valuable materials are needed for renewable energies and the production of fuel cells. Integration of components, design of structures and managing knowledge inherent in engineering is a difficult and complex endeavor. A wide range of advanced technologies such as smart materials and their approaches in alternative energy have to be invoked in providing assistance for knowledge requirements ranging from acquisition, modeling, (re)using, retrieving, sharing, publishing and maintaining of knowledge. Integration, Design and management with regards to knowledge management originates at least on three roots.
This book presents the proceedings of the first International Upcycling Symposium 2020, held on 4th September 2020 at De Montfort University (DMU) in Leicester, UK (online), as a joint effort between DMU, Lund University, Nottingham Trent University and Newcastle University. This book presents state of the art of research and practice in "upcycling" at the international level. The subject of this book, upcycling, is a term to describe the processes of creating or modifying a product from used or waste materials, components and products, which is of equal or higher quality or value than the compositional elements. This book describes new theories, approaches and scientific research findings related to upcycling and presents examples of upcycling practice, across multiple sectors, scales and contexts. Bringing together research from over 35 multidisciplinary experts, the book discusses state-of-the-art knowledge and practices on upcycling in different geographical, economic, socio-cultural and technological contexts at an international level. Readers will gain fundamental understanding of upcycling with its varied definitions and forms across sectors and scales, and to be informed of the latest upcycling research and practices including valuable ideas, theories, projects, experiences and insights by global experts.
Inland Waterway (IW), or river vessels are in every respect different from the seagoing ships. The professional literature is mostly focused on conventional seagoing fleets, leaving a gap in the documentation of design practices for IW vessels. The principal attribute that differentiates river vessels from the seagoing ships is the low, or shallow, draught due to water depth restrictions. This book addresses key aspects for the design of contemporary, shallow draught IW vessels for the transport of dry cargo (containers and bulk cargo). Most of the logic that is presented is applicable to the design of river vessels for any river, but the material that is presented is focused on vessels for the River Danube and its tributaries. The term 'contemporary river vessel' assumes that the present-day technology and current Danube river infrastructure are taken into consideration in its design. It is believed that the technologies and concepts that are proposed here are applicable for all new vessel designs for the next 10 to 15 years. Other innovative technologies should be considered for designs beyond that horizon. Moreover, nowadays contemporary IW vessel must be in harmony with the Environmentally Sustainable Transport (EST) policies and hence special attention is paid to both ecology and efficiency. Note however that shipowners and ship operators usually tend to choose the conventional cost-effective transport technologies. Given that potential divergence of interests, the concepts and technologies treated here may be regarded as innovative.
This book showcases cutting-edge research papers from the 8th International Conference on Research into Design (ICoRD 2021) written by eminent researchers from across the world on design processes, technologies, methods and tools, and their impact on innovation, for supporting design for a connected world. The theme of ICoRD'21 has been "Design for Tomorrow". The world as we know it in our times is increasingly becoming connected. In this interconnected world, design has to address new challenges of merging the cyber and the physical, the smart and the mundane, the technology and the human. As a result, there is an increasing need for strategizing and thinking about design for a better tomorrow. The theme for ICoRD'21 serves as a provocation for the design community to think about rapid changes in the near future to usher in a better tomorrow. The papers in this book explore these themes, and their key focus is design for tomorrow: how are products and their development be addressed for the immediate pressing needs within a connected world? The book will be of interest to researchers, professionals and entrepreneurs working in the areas on industrial design, manufacturing, consumer goods, and industrial management who are interested in the new and emerging methods and tools for design of new products, systems and services.
This book showcases cutting-edge research papers from the 8th International Conference on Research into Design (ICoRD 2021) written by eminent researchers from across the world on design processes, technologies, methods and tools, and their impact on innovation, for supporting design for a connected world. The theme of ICoRD'21 has been "Design for Tomorrow". The world as we know it in our times is increasingly becoming connected. In this interconnected world, design has to address new challenges of merging the cyber and the physical, the smart and the mundane, the technology and the human. As a result, there is an increasing need for strategizing and thinking about design for a better tomorrow. The theme for ICoRD'21 serves as a provocation for the design community to think about rapid changes in the near future to usher in a better tomorrow. The papers in this book explore these themes, and their key focus is design for tomorrow: how are products and their development be addressed for the immediate pressing needs within a connected world? The book will be of interest to researchers, professionals and entrepreneurs working in the areas on industrial design, manufacturing, consumer goods, and industrial management who are interested in the new and emerging methods and tools for design of new products, systems and services.
Climbing robot is a challenging research topic that has gained much attention from researchers. Most of the robots reported in the literature are designed to climb on manmade structures, but seldom robots are designed for climbing natural environment such as trees. Trees and manmade structures are very different in nature. It brings different aspects of technical challenges to the robot design. In this book, you can find a collection of the cutting edge technologies in the field of tree-climbing robot and the ways that animals climb. It provides a valuable reference for robot designers to select appropriate climbing methods in designing tree-climbing robots for specific purposes. Based on the study, a novel bio-inspired tree-climbing robot with several breakthrough performances has been developed and presents in this book. It is capable of performing various actions that is impossible in the state-of-the-art tree-climbing robots, such as moving between trunk and branches. This book also proposes several approaches in autonomous tree-climbing, including the sensing methodology, cognition of the environment, path planning and motion planning on both known and unknown environment. |
![]() ![]() You may like...
Renewable Power for Sustainable Growth…
Atif Iqbal, Hasmat Malik, …
Hardcover
R4,535
Discovery Miles 45 350
Device Applications of Nonlinear…
Salvatore Baglio, Adi Bulsara
Hardcover
R2,892
Discovery Miles 28 920
The Super Memory - 3 Memory Books in 1…
Edoardo Zeloni Magelli
Hardcover
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi
Paperback
![]()
Fault-tolerant Control and Diagnosis for…
Rafael Martinez-Guerra, Fidel Melendez-Vazquez, …
Hardcover
R2,881
Discovery Miles 28 810
Particle Damping Technology Based…
Zheng Lu, Sami F. Masri, …
Hardcover
R4,404
Discovery Miles 44 040
|