![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
This beautiful book draws on Robert Race's extensive collection of traditional moving toys, looking at the ways the makers have achieved remarkable and varied results, often with very limited resources. Each chapter begins by looking at the mechanisms and materials used in some of these traditional moving toys, goes on to consider possible variations, and describes how to make a related moving toy. It continues, from this basis, to develop a design for an automaton. The book shows that designing and making these simple but wonderfully satisfying mechanical devices is fun, and that good results can be achieved in many different ways, using a variety of materials, tools and equipment such as wood and wire, card and paper, bamboo, string, tin plate and feathers.
This volume contains a selection of papers presented at the 7th Nirma University International Conference on Engineering 'NUiCONE 2019'. This conference followed the successful organization of four national conferences and six international conferences in previous years. The main theme of the conference was "Technologies for Sustainable Development", which is in line with the "SUSTAINABLE DEVELOPMENT GOAL" established by the United Nations. The conference was organized with many inter-disciplinary technical themes encompassing a broad range of disciplines and enabling researchers, academicians and practitioners to choose between ideas and themes. Besides, NUiCONE-2019 has also presented an exciting new set of events to engage practicing engineers, technologists and technopreneurs from industry through special knowledge sharing sessions involving applied technical papers based on case-study applications, white-papers, panel discussions, innovations and technology products. This proceedings will definitely provide a platform to proliferate new findings among researchers. Advances in Transportation Engineering Emerging Trends in Water Resources and Environmental Engineering Construction Technology and Management Concrete and Structural Engineering Futuristic Power System Control of Power Electronics Converters, Drives and E-mobility Advanced Electrical Machines and Smart Apparatus Chemical Process Development and Design Technologies and Green Environment Sustainable Manufacturing Processes Design and Analysis of Machine and Mechanism Energy Conservation and Management Advances in Networking Technologies Machine Intelligence / Computational Intelligence Autonomic Computing Control and Automation Electronic Communications Electronics Circuits and System Design Signal Processing
Provides an understanding of the physics of flight during take-off and landing, from aerodynamics to flight performance, from simulation to design. Discusses the physical limits of lift generation giving the lift generation potential. Concentrates on the specifics of high-lift aerodynamics to provide a first insight. Analyzes the needs of an aircraft to improve its performance during take-off, approach, and landing. Focus on civil transport aircraft application, but the associated physics can apply to any other aircraft.
In structural terms reciprocal frame structures are 'three dimensional assemblies of mutually supporting beams'. But behind this definition lie some breathtakingly beautiful and complex structures at the heart of buildings both ancient and modern. This new book explores the principles of these apparently simple structures and demonstrates how they can be used in the context of a modern building. Starting with historic designs by de Honnecourt, Da Vinci and Serlio, the book presents the wealth of possible RF morphologies, and investigates the geometrical, structural and practical design issues of reciprocal frames. The case studies look at stunning examples of reciprocal frame architecture that range from low environmental impact buildings and self built examples in the UK and USA, to the fascinating and elegant structures of the Puppet Theatre in Seiwa, Tokyo's Spinning House, Sukiya -Yu house, The Toyoson Stonemason museum and the Life Sciences Laboratory - Torikabuto in Japan. The book is designed to inform and inspire architects and structural engineers alike, and brings to life a structural system whose principles have been used for thousands of years.
Handbook for Transversely Finned Tubes Heat Exchangers Design contains detailed experimental data, correlations, and design methods for designing and improving the performance of finned tube heat exchangers. It covers the three main types, circular finned, square finned, and helical finned tube bundles. Based on extensive experimental studies and tested at leading design and research institutions, this handbook provides an extensive set of materials for calculating and designing convective surfaces from transversely finned tubes, with a particular emphasis on power plant applications.
Finite Element Analysis of Weld Thermal Cycles Using ANSYS aims at educating a young researcher on the transient analysis of welding thermal cycles using ANSYS. It essentially deals with the methods of calculation of the arc heat in a welded component when the analysis is simplified into either a cross sectional analysis or an in-plane analysis. The book covers five different cases involving different welding processes, component geometry, size of the element and dissimilar material properties. A detailed step by step calculation is presented followed by APDL program listing and output charts from ANSYS. Features: Provides useful background information on welding processes, thermal cycles and finite element method Presents calculation procedure for determining the arc heat input in a cross sectional analysis and an in-plane analysis Enables visualization of the arc heat in a FEM model for various positions of the arc Discusses analysis of advanced cases like dissimilar welding and circumferential welding Includes step by step procedure for running the analysis with typical input APDL program listing and output charts from ANSYS.
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on 'Fundamentals of Luminescence' elucidates the theoretical background and fundamental properties of luminescence as applied to solid-state phosphor materials. The book includes the chapters that cover: Basic principles of luminescence, the principal phosphor materials, and their optical properties New developments in principal phosphors in nitrides, perovskite, and silicon carbide Revised lanthanide level locations and its impact on phosphor performance Detailed descriptions of energy transfer and upconversion processes in bulk and nanoscaled particles and core-shell structures Rapid developing organic and polymer luminescent materials and devices
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on 'Novel Phosphors, Synthesis, and Applications' provides the descriptions of synthesis and optical properties of phosphors used in different applications, including the novel phosphors for some newly developed applications. The chapters in this book cover: Various LED-based phosphors and their synthesis and applications Ingenious integrated smart phosphors and their novel optoelectronic and photonic devices Quantum dot, single crystalline, and glass phosphors Upconversion nanoparticles for super-resolution imaging and photonic and biological applications Special phosphors for laser, OLED, energy storage, quantum cutting, thermometry, photosynthesis, AC-driven LED, and solar cells
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on 'Experimental Methods for Phosphor Evaluation and Characterization' addresses the theoretical and experimental methods for phosphor evaluation and characterization. The chapters in the book cover: First principle and DFT analysis of optical, structural, and chemical properties of phosphors Phosphor design and tuning through structure and solid solution Design for IR, NIR, and narrowband emission and thermally stable phosphors and nanophosphors Detailed illustration for measurement of the absolute photoluminescence quantum yield of phosphors Phosphor analysis through photoionization, high pressure, and synchrotron radiation studies
Road Vehicle Dynamics: Fundamentals and Modeling with MATLAB (R), Second Edition combines coverage of vehicle dynamics concepts with MATLAB v9.4 programming routines and results, along with examples and numerous chapter exercises. Improved and updated, the revised text offers new coverage of active safety systems, rear wheel steering, race car suspension systems, airsprings, four-wheel drive, mechatronics, and other topics. Based on the lead author's extensive lectures, classes, and research activities, this unique text provides readers with insights into the computer-based modeling of automobiles and other ground vehicles. Instructor resources, including problem solutions, are available from the publisher.
Vibration Problems in Machines explains how to infer information about the internal operations of rotating machines from external measurements through methods used to resolve practical plant problems. Second edition includes summary of instrumentation, methods for establishing machine rundown data, relationship between the rundown curves and the ideal frequency response function. The section on balancing has been expanded and examples are given on the strategies for balancing a rotor with a bend, with new section on instabilities. It includes case studies with real plant data, MATLAB (R) scripts and functions for the modelling and analysis of rotating machines.
Earthen levees are extensively used to protect the population and infrastructure from periodic floods and high water due to storm surges. The causes of failure of levees include overtopping, surface erosion, internal erosion, and slope instability. Overtopping may occur during periods of flooding due to insufficient freeboard. The most problematic situation involves the levee being overtopped by both surge and waves when the surge level exceeds the levee crest elevation with accompanying wave overtopping. Overtopping of levees produces fast-flowing, turbulent water velocities on the landward-side slope that can potentially damage the protective grass covering and expose the underlying soil to erosion. If overtopping continues long enough, the erosion may eventually result in loss of levee crest elevation and possibly breaching of the protective structure. Hence, protecting levees from erosion by surge overflow and wave overtopping is necessary to assure a viable and safe levee system. This book presents a cutting-edge approach to understanding overtopping hydraulics under negative free board of earthen levees, and to the study of levee reinforcing methods. Combining soil erosion test, full-scale laboratory overtopping hydraulics test, and numerical modeling for the turbulent overtopping hydraulics. It provides an analysis that integrates the mechanical and hydraulic processes governing levee overtopping occurrences and engineering approaches to reinforce overtopped levees. Topics covered: surge overflow, wave overtopping and their combination, full-scale hydraulic tests, erosion tests, overtopping hydraulics, overtopping discharge, and turbulent analysis. This is an invaluable resource for graduate students and researchers working on levee design, water resource engineering, hydraulic engineering, and coastal engineering, and for professionals in the field of civil and environmental engineering, and natural hazard analysis.
A composite sandwich panel is a hybrid material made up of constituents such as a face sheet, a core, and adhesive film for bonding the face sheet and core together. Advances in materials have provided designers with several choices for developing sandwich structures with advanced functionalities. The selection of a material in the sandwich construction is based on the cost, availability, strength requirements, ease of manufacturing, machinability, and post-manufacturing process requirements. Sandwich Composites: Fabrication and Characterization provides insights into composite sandwich panels based on the material aspects, mechanical properties, defect characterization, and secondary processes after the fabrication, such as drilling and repair. FEATURES Outlines existing fabrication methods and various materials aspects Examines composite sandwich panels made of different face sheets and core materials Covers the response of composite sandwich panels to static and dynamic loads Describes parameters governing the drilling process and repair procedures Discusses the applications of composite sandwich panels in various fields Explores the role of 3D printing in the fabrication of composite sandwich panels Due to the wide scope of the topics covered, this book is suitable for researchers and scholars in the research and development of composite sandwich panels. This book can also be used as a reference by professionals and engineers interested in understanding the factors governing the material properties, material response, and the failure behavior under various mechanical loads.
This book presents students with the key fundamental elements of structural analysis and covers as much material as is needed for a single-semester course, allowing for a full understanding of indeterminate structural analysis methods without being overwhelming. Authored by four full professors of engineering, this class-tested approach is more practical and focused than what's found in other existing structural analysis titles, and therefore more easily digestible and accessible. It also allows students to solve indeterminate structural analysis problems by utilizing different methods, enabling them to compare the merits of each, and providing a greater understanding of the subject material. Features: Includes practical examples to illustrate the concepts presented throughout the book Examines and compares different methods to solve indeterminate structural analysis problems Presents a focused treatment of the subject suitable as a primary text for coursework Static Analysis of Determinate and Indeterminate Structures is suitable for Civil Engineering students taking Structural Analysis courses.
1 Explores the foundation of continuum mechanics 2 Establishes the tensorial nature of strain measures and influence of rotation of frames on various measures 3 Illustrates the physical meaning of the components of strains. 4 Provides the definitions and measures of stress 5 Prepares graduate students for fundamental and basic research work in engineering and sciences
Boundary value problems involving contact are important for industrial applications in both mechanical and civil engineering, such as structural foundations, bearings, metal forming processes, rubber sealings, drilling problems, crash analysis of cars, rolling contact between car tyres and the road, cooling of electronic devices, and many more. Other applications are related to biomechanical engineering design, where human joints, implants or teeth are considered. Due to this variety, contact problems today are combined either with large elastic or inelastic deformations, including time-dependent responses. Thermal coupling may also have to be considered, and even stability behaviour has to be linked to contact, such as wrinkling arising in metal forming problems. The topic of computational contact is described in depth here, providing different formulations, algorithms and discretisation techniques for contact problems that have been established in the geometrically linear and nonlinear ranges. This book provides the necessary continuum mechanics background. Special geometrical relations needed to set up the contact constraints are derived, and constitutive equations stemming from tribology which are valid at the contact interface are discussed in detail, without going into a numerical treatment. Solid and beam contact is considered, as is contact of unstable systems and thermomechanical contact. The algorithmic aspects cover a broad range of solution methods. Additionally, adaptive discretisation techniques for contact analysis are presented as a modern tool for engineering design simulations. This book:
Discusses the concepts of mechanical, thermal, and thermodynamic equilibrium and their applications. Covers the molecular basis for internal energy, entropy, thermodynamic equilibrium, and reversibility. Enables the reader to model irreversibility and determine the net loss in performance of a thermal system compared to an idealized system and approach an ideal one. Demonstrates entropy as a path independent property by use of reversible heat engines and reversible heat pumps interacting with a process between two states, the environment and the reservoir. Covers the role of reversibility from a thermodynamics standpoint and relates it to other areas, such as gas dynamics, combustion, propulsion, power plant engineering, and engines.
Reliability technology plays an important role in the present era of industrial growth, optimal efficiency, and reducing hazards. This book provides insights into current advances and developments in reliability engineering, and the research presented is spread across all branches. It discusses interdisciplinary solutions to complex problems using different approaches to save money, time, and manpower. It presents methodologies of coping with uncertainty in reliability optimization through the usage of various techniques such as soft computing, fuzzy optimization, uncertainty, and maintenance scheduling. Case studies and real-world examples are presented along with applications that can be used in practice. This book will be useful to researchers, academicians, and practitioners working in the area of reliability and systems assurance engineering. Provides current advances and developments across different branches of engineering. Reviews and analyses case studies and real-world examples. Presents applications to be used in practice. Includes numerous examples to illustrate theoretical results.
The second of two volumes concentrating on the dynamics of slender bodies within or containing axial flow, Volume 2 covers fluid-structure interactions relating to shells, cylinders and plates containing or immersed in axial flow, as well as slender structures subjected to annular and leakage flows. This volume has been thoroughly updated to reference the latest developments in the field, with a continued emphasis on the understanding of dynamical behaviour and analytical methods needed to provide long-term solutions and validate the latest computational methods and codes, with increased coverage of computational techniques and numerical methods, particularly for the solution of non-linear three-dimensional problems.
Examines all the major types of mechatronic systems used in railway applications Surveys rail vehicle mechatronic design processes with practical sources and references Outlines modelling approaches for rail vehicles, from concept to finishined prototype Analyzes system integration of complex railway mechatronic systems Presents numerical experiments and mechatronic models with railway transport applications
1 uniquely integrates essentials from vehicle dynamics and control theory for controller design with NI LabVIEW at the level of practical applications 2 Provides new features in the modelling of drivetrain configuration, regenerative braking, rollover dynamics for model-based control 3 Shares advanced controller designs that have yet to be published 4 Provides mathematical models of vehicle behavior of vehicles that move dynamically in the presence of disturbances to the motion 5 Demonstrates what a control design engineer can do to practically achieve the desired vehicle behavior based on mathematical models
This new volume explores the exciting and diverse applications of three-dimensional printing in a variety of industries, including food processing, environmental sciences, biotechnology, medical devices, energy storage, civil engineering, the textile and fashion industry, and more. It describes the various 3D printing methods, the commonly used materials, and the pros and cons. It also presents an overview of the historical development and modern-day trends in additive manufacturing, as well as an exploration of the prospects of 3D printing technology in promoting academic education.
This book applies vibration engineering to turbomachinery, covering installation, maintenance and operation. With a practical approach based on clear theoretical principles and formulas, the book is an essential how-to guide for all professional engineers dealing with vibration issues within turbomachinery. Vibration problems in turbines, large fans, blowers, and other rotating machines are common issues within turbomachinery. Applicable to industries such as oil and gas mining, cement, pharmaceutical and naval engineering, the ability to predict vibration based on frequency spectrum patterns is essential for many professional engineers. In this book, the theory behind vibration is clearly detailed, providing an easy to follow methodology through which to calculate vibration propagation. Describing lateral and torsional vibration and how this impacts turbine shaft integrity, the book uses mechanics of materials theory and formulas alongside the matrix method to provide clear solutions to vibration problems. Additionally, it describes how to carry out a risk assessment of vibration fatigue. Other topics covered include vibration control techniques, the design of passive and active absorbers and rigid, non-rigid and Z foundations. The book will be of interest to professionals working with turbomachinery, naval engineering corps and those working on ISO standards 10816 and 13374. It will also aid mechanical engineering students working on vibration and machine design. |
![]() ![]() You may like...
Magnetic Bearings and Bearingless Drives
Akira Chiba, Tadashi Fukao, …
Hardcover
R2,478
Discovery Miles 24 780
Rubber-Pad Forming Processes…
Maziar Ramezani, Zaidi Mohd Ripin
Hardcover
R4,201
Discovery Miles 42 010
Mechatronic Components - Roadmap to…
Emin Faruk Kececi
Paperback
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,846
Discovery Miles 48 460
Quality Analysis of Additively…
Javad Kadkhodapour, Siegfried Schmauder, …
Paperback
R4,880
Discovery Miles 48 800
Power Recovery from Low Grade Heat by…
Ian Smith, Nikola Stosic, …
Hardcover
R3,642
Discovery Miles 36 420
|