Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
The use of new engineering materials in the aerospace and space industry is usually governed by the need for enhancing the bearing capacity of structural elements and systems, improving the performance of specific applications, reducing structural weight and improving its cost-effectiveness. Crystalline composites and nanomaterials are used to design lightweight structural elements because such materials provide stiffness, strength and low density/weight. This book reviews the effect of high temperature creep on structural system response, and provides new phenomenological creep models (deterministic and probabilistic approach) of composites and nanomaterials. Certain criteria have been used in selecting the creep functions in order to describe a wide range of different behavior of materials. The experimental testing and evaluation of time variant creep in composite and nanomaterials is quite complex, expensive and, at times, time consuming. Therefore, the analytical analysis of creep properties and behavior of structural elements made of composite and nanocomposite materials subjected to severe thermal loadings conditions is of great practical importance. Composite elements and heterogeneous materials, from which they are made, make essential changes to the classical scheme for constructing the phenomenological creep model of composite elements, because it reflects the specificity of the composite material and manifests itself in the choice of two basic functions of the creep constitutive equation, namely memory and instantaneous modulus of elasticity functions. As such, the concepts and analytical techniques presented here are important. But the principal objective of this book is to demonstrate how nonlinear viscoelastic engineering creep theory can be incorporated into the general theory of mechanics of materials so that composite components can be designed and analyzed. The results are supported by step-by-step practical structural design examples and will be useful for structural engineers, code developers as well as material science researchers and university faculty. The phenomenological creep models presented in this book provide a usable engineering approximation for many applications in composite engineering.
This book comprises the most recent advanced results on nonlinear electronic circuits, and the contents range from networks, synchronization, memristors to several other topics. Both theory and advanced timely results are included. It provides an overview of popular themes in the field of nonlinear dynamics of electronic circuits with contributions from outstanding scientists.
Introduces historical background of SPL, including evolution of the technique and tools Explains the mechanism of sample modification/manipulation, types of AFM tips, technical parts of the experimental setup, and materials on which the technique can be applied Shows the different types of devices and structures fabricated by SPL, together with the processing steps Contains a complete and state-of-the art package of examples and different approaches, performed by different international research groups Summarizes strengths, limitations, and potential of SPL
This volume provides valuable insight into diverse topics related to mechanical engineering and presents state-of-the-art work on sustainable development being carried out throughout the world by budding researchers and scientists. Divided into three sections, the volume covers machine design, materials and manufacturing, and thermal engineering. It presents innovative research work on machine design that is of relevance to such varied fields as the automotive industry, agriculture, and human anatomy. The second section addresses materials characterization, an important tool in assessing proper materials for application-oriented jobs, and emerging unconventional machining processes that are important in design engineering for new products and tools. The section on thermal engineering broadly covers the use of viable alternate fuels, such as HHO, biodiesel, etc., with the objective of reducing the burden on petroleum reserves and the environment.
This book focuses on process simulation in chemical engineering with a numerical algorithm based on the moving finite element method (MFEM). It offers new tools and approaches for modeling and simulating time-dependent problems with moving fronts and with moving boundaries described by time-dependent convection-reaction-diffusion partial differential equations in one or two-dimensional space domains. It provides a comprehensive account of the development of the moving finite element method, describing and analyzing the theoretical and practical aspects of the MFEM for models in 1D, 1D+1d, and 2D space domains. Mathematical models are universal, and the book reviews successful applications of MFEM to solve engineering problems. It covers a broad range of application algorithm to engineering problems, namely on separation and reaction processes presenting and discussing relevant numerical applications of the moving finite element method derived from real-world process simulations.
New Edition Now Covers Thin Plates, Plastic Deformation, Dynamics and Vibration Structural and stress analysis is a core topic in a range of engineering disciplines - from structural engineering through to mechanical and aeronautical engineering and materials science. Structural and Stress Analysis: Theories, Tutorials and Examples, Second Edition provides and supports a conceptual understanding of the theories and formulae, and focuses on the basic principles rather than on the formulae and the solution procedures. It emphasizes problem solving through a structured series of tutorials and problems which build up students' understanding and encourage both numerical and conceptual approaches. It stands apart from other texts which set out rigorous mathematic derivations of formulae followed by worked examples and questions for practice. Students need to be capable of not only solving a structural problem using formulas, but also of understanding their solutions in practical and physical terms. Notwithstanding, the book covers a good range of topics: tension and compression; shear; torsion; bending, properties of cross-sections; shear force and bending moment diagrams; stresses in beams; deflection of beams; complex stresses and theories of elastic failure; energy methods; statically indeterminate systems; and structural instability. The new edition includes more topics, such as plastic deformation, dynamics and introduction to the thin plate theory, which are essential when students start their design courses. Structural and Stress Analysis: Theories, Tutorials and Examples, Second Edition not only suits undergraduates but is useful for professional engineers who want to get a good grasp of the basic concepts of stress analysis.
Understand How to Use and Develop Meshfree Techniques An Update of a Groundbreaking Work Reflecting the significant advances made in the field since the publication of its predecessor, Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition systematically covers the most widely used meshfree methods. With 70% new material, this edition addresses important new developments, especially on essential theoretical issues. New to the Second Edition Much more details on fundamental concepts and important theories for numerical methods Discussions on special properties of meshfree methods, including stability, convergence, accurate, efficiency, and bound property More detailed discussion on error estimation and adaptive analysis using meshfree methods Developments on combined meshfree/finite element method (FEM) models Comparison studies using meshfree and FEM Drawing on the author's own research, this book provides a single-source guide to meshfree techniques and theories that can effectively handle a variety of complex engineering problems. It analyzes how the methods work, explains how to use and develop the methods, and explores the problems associated with meshfree methods. To access MFree2D (copyright, G. R. Liu), which accompanies MESHFREE METHODS: MOVING BEYOND THE FINITE ELEMENT METHOD, Second Edition (978-1-4200-8209-8) by Dr. G. R. Liu, please go to the website: www.ase.uc.edu/~liugr An access code is needed to use program - to receive it please email Dr. Liu directly at: [email protected] Dr. Liu will reply to you directly with the code, and you can then proceed to use the software.
Finite Element Analysis Applications: A Systematic and Practical Approach strikes a solid balance between more traditional FEA textbooks that focus primarily on theory, and the software specific guidebooks that help teach students and professionals how to use particular FEA software packages without providing the theoretical foundation. In this new textbook, Professor Bi condenses the introduction of theories and focuses mainly on essentials that students need to understand FEA models. The book is organized to be application-oriented, covering FEA modeling theory and skills directly associated with activities involved in design processes. Discussion of classic FEA elements (such as truss, beam and frame) is limited. Via the use of several case studies, the book provides easy-to-follow guidance on modeling of different design problems. It uses SolidWorks simulation as the platform so that students do not need to waste time creating geometries for FEA modelling.
For courses in introductory combined Statics and Mechanics of Materials courses found in ME, CE, AE, and Engineering Mechanics departments. This package includes Pearson Mastering (TM) Engineering. Statics and Mechanics of Materials represents a combined abridged version of two of the author's books, namely Engineering Mechanics: Statics, Fourteenth Edition and Mechanics of Materials, Tenth Edition. It provides a clear and thorough presentation of both the theory and application of the important fundamental topics of these subjects, that are often used in many engineering disciplines. The development emphasizes the importance of satisfying equilibrium, compatibility of deformation, and material behavior requirements. The hallmark of the book, however, remains the same as the author's unabridged versions, and that is, strong emphasis is placed on drawing a free-body diagram, and the importance of selecting an appropriate coordinate system and an associated sign convention whenever the equations of mechanics are applied. Throughout the book, many analysis and design applications are presented, which involve mechanical elements and structural members often encountered in engineering practice. This package includes Pearson Mastering (TM) Engineering, an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Interactive, self-paced tutorials provide individualized coaching to help students stay on track. With a wide range of activities available, students can actively learn, understand, and retain even the most difficult concepts. The text and Mastering Engineering work together to guide students through engineering concepts with a multi-step approach to problems. Pearson Mastering Engineering should only be purchased when required by an instructor. Please be sure you have the correct ISBN and Course ID. Instructors, contact your Pearson rep for more information.
This volume aims to provide the reader with a broad cross-section of empirical research being carried out into engineers at work. The chapters provide pointers to other relevant studies over recent decades - an important aspect, we believe, because this area has only recently begun to coalesce as a field of study and up to now relevant empirical research has tended to be published across a range of academic disciplines. This lack of readily available literature might explain why contemporary notions of engineering have drifted far from the realities of practice and are in urgent need of revision. The principal focus is on what empirical studies tell us about the social and technical aspects of engineering practice and the mutual interaction between the two. After a foreword by Gary Lee Downey, the research presented by the various chapter authors is based on empirical data from studies of engineers working in a variety of global settings that include Australia, Ireland, Portugal, South Asia, Switzerland, the UK and the US The following groups of readers are addressed: *researchers and students with an interest in engineering practice, *professional engineers, particularly those interested in research on engineering practice, *engineering educators, *people who employ, recruit or work with engineers. Providing a much clearer picture of engineering practice and its variations than has been available until now, the book is of interest to engineers and those who work with them. At the same time it provides invaluable resource material for educators who are aiming for more authentic learning experiences in their classrooms. Further information, visit the website Engineering Practice in a Global Context Online: http://epr.ist.utl.pt/EPGC/
Vacuum technology finds itself in many areas of industry and research. These include materials handling, packaging, gas sampling, filtration, degassing of oils and metals, thin-film coating, electron microscopy, particle acceleration, and impregnation of electrical components. It is vital to design systems that are appropriate to the application, and with so many potential solutions this can become overwhelming. Vacuum Technique provides an overview of vacuum technology, its different design methodologies, and the underlying theory. The author begins with a summary of the properties of low-pressure gases, then moves on to describe mathematical modeling of gas transfer in the vacuum system, the operation of pumps and gauges, computer-aided synthesis and analysis of systems, and the design of different vacuum systems. In particular, the author discusses the structure and characteristics of low, middle, high, and superhigh vacuum systems, as well as the characteristics of joints, materials, movement inputs, and all aspects of production technology and construction standards. Using specific examples rather than describing the various elements, Vacuum Technique supplies engineers, technicians, researchers, and students with needed expertise and a comprehensive guide to designing, selecting, and using an appropriate vacuum system for a specific purpose.
Linear induction accelerators are successfully used as power supplies for numerous devices of relativistic high-frequency electronics. This book addresses ways to solve physical and engineering problems arising in the calculation, design, modeling and operation of linear induction accelerators intended for supplying relativistic microwave devices. It reviews and analyzes both classic and recent studies on the topic of linear induction accelerators (LIA) for generating and amplifying microwave radiation by relativistic devices.
This book addresses aspects of human factors in engineering and provides a detailed discussion of novel approaches, systems engineering tools, artificial cognitive systems, and intelligent technologies and automation. It presents applications in diverse areas including digital manufacturing, transportation, infrastructure development, and cybersecurity. This book: Merges the engineering perspective with the human factors and social dimension of Computing and artificial intelligence-based technologies. Covers technological development of human factors engineering and the human dimension in applications across all areas of modern society. Relates to human behavior in the context of technology and systems interactions. Discusses the design and the appropriation of 3D printing techniques in the management of an innovative product system. Presents systems engineering tools, user experience methodologies, artificial cognitive systems, intelligent technologies, and automation. The text is for students, professionals, and researchers in the fields of ergonomics, human factors, industrial engineering, and manufacturing engineering.
Here is a textbook for senior undergraduate and graduate level students that offers a novel and systematic look into the dynamics of MEMS. It includes numerous solved examples together with the proposed problems. The material to be found here will also be of interest to researchers with a non-mechanical background. The book focuses on the mechanical domain, specifically the dynamic sub-domain, and provides an in-depth treatment of problems that involve reliable modeling, analysis and design.
Soft computing methods such as neural networks and genetic algorithms draw on the problem solving strategies of the natural world which differ fundamentally from the mathematically-based computing methods normally used in engineering. Human brains are highly effective computers with capabilities far beyond those of the most sophisticated electronic computers. The 'soft computing' methods they use can solve very difficult inverse problems based on reduction in disorder. This book outlines these methods and applies them to a range of difficult engineering problems, including applications in computational mechanics, earthquake engineering, and engineering design. Most of these are difficult inverse problems - especially in engineering design - and are treated in depth.
This brilliant treatise is based on extensive experimental and technological data derived from high-temperature materials development processes. The distinguished authors analyse results from the development of nuclear reactors and aerospace rocket engines. They apply this data to the problem of bearing capacity and the fracture of thermally loaded bodies. They establish new regularities of fracture at various modes of local and combined thermal loading.
Finite Element Computations in Mechanics with R: A Problem-Centred Programming Approach provides introductory coverage of the finite element method (FEM) with the R programming language, emphasizing links between theory and implementation of FEM for problems in engineering mechanics. Useful for students, practicing engineers, and researchers, the text presents the R programming as a convenient easy-to-learn tool for analyzing models of mechanical systems, with finite element routines for structural, thermal, and dynamic analyses of mechanical systems, and also visualization of the results. Full-color graphics are used throughout the text.
The book discusses the concept of process automation and mechatronic system design, while offering a unified approach and methodology for the modeling, analysis, automation and control, networking, monitoring, and sensing of various machines and processes from single electrical-driven machines to large-scale industrial process operations. This step-by-step guide covers design applications from various engineering disciplines (mechanical, chemical, electrical, computer, biomedical) through real-life mechatronics problems and industrial automation case studies with topics such as manufacturing, power grid, cement production, wind generator, oil refining, incubator, etc. Provides step-by-step procedures for the modeling, analysis, control and automation, networking, monitoring, and sensing of single electrical-driven machines to large-scale industrial process operations. Presents model-based theory and practice guidelines for mechatronics system and process automation design. Includes worked examples in every chapter and numerous end-of-chapter real-life exercises, problems, and case studies.
The proceedings of the conference is going to benefit the researchers, academicians, students and professionals in getting enlightened on latest technologies on structural mechanics, structure and infrastructure engineering. Further, work on practical applications of developed scientific methodologies to civil structural engineering will make the proceedings more interesting and useful to practicing engineers and structural designers.
This text provides the foundation material for solving problems in vibroacoustics. These include the prediction of structural vibration levels and sound pressure levels in enclosed spaces resulting from known force or acoustic pressure excitations and the prediction of sound levels radiated by vibrating structures. The book also provides an excellent theoretical basis for understanding the processes involved in software that predicts structural vibration levels and structural sound radiation resulting from force excitation of the structure, as well as sound levels in enclosed spaces resulting from vibration of part of the enclosing structure or resulting from acoustic sources within the enclosure. The book is written in an easy to understand style with detailed explanations of important concepts. It begins with fundamental concepts in vibroacoustics and provides a framework for problem solution in both low and high frequency ranges. It forms a primer for students, and for those already well versed in vibroacoustics, the book provides an extremely useful reference. It offers a unified treatment of both acoustics and vibration fundamentals to provide a basis for solving problems involving structural vibration, sound radiation from vibrating structures, sound in enclosed spaces, and propagation of sound and vibration.
This text provides the foundation material for solving problems in vibroacoustics. These include the prediction of structural vibration levels and sound pressure levels in enclosed spaces resulting from known force or acoustic pressure excitations and the prediction of sound levels radiated by vibrating structures. The book also provides an excellent theoretical basis for understanding the processes involved in software that predicts structural vibration levels and structural sound radiation resulting from force excitation of the structure, as well as sound levels in enclosed spaces resulting from vibration of part of the enclosing structure or resulting from acoustic sources within the enclosure. The book is written in an easy to understand style with detailed explanations of important concepts. It begins with fundamental concepts in vibroacoustics and provides a framework for problem solution in both low and high frequency ranges. It forms a primer for students, and for those already well versed in vibroacoustics, the book provides an extremely useful reference. It offers a unified treatment of both acoustics and vibration fundamentals to provide a basis for solving problems involving structural vibration, sound radiation from vibrating structures, sound in enclosed spaces, and propagation of sound and vibration.
Innovationen und nachhaltiges Wirtschaften sind die Basis fA1/4r den Erfolg von Unternehmen. Grundlage dafA1/4r ist ein zielorientiertes und professionell durchgefA1/4hrtes Produktmanagement. Und Produktmanagement ist nur dann erfolgreich, wenn es alle Einflussfaktoren berA1/4cksichtigt, die WertschApfungskette integrativ betrachtet und konsequent prozessorientiert alle Schnittstellen bruchfrei bewAltigt. Klar strukturiert und leicht lesbar stellt dieses Buch systematisch und umfassend die relevanten Erfolgsfaktoren des Produktmanagements dar. Im ersten Teil erlAutert es die verschiedenen Aspekte und Rahmenbedingungen des Produktmanagements, im zweiten Teil beschreibt es in einem umsetzungsnahen Referenzmodell den Kernprozess des Produktmanagements in 11 Phasen. Besondere, neue Schwerpunkte der aktuellen Auflage sind die EinflA1/4sse der Digitalisierung und die Auswirkungen von Industrie 4.0 sowie die Minimierung von Umweltauswirkungen durch das Konzept der Integrierten Produktpolitik. Dabei werden die digitale Fabrik und virtuelle Techniken speziell unter dem Aspekt der Produktions- und Prozessplanung betrachtet. Das Buch richtet sich an Betriebswirte, Ingenieure und Wirtschaftsingenieure in Vertrieb und Marketing, Produktentwicklung, Beschaffung und Fertigung, an Praktiker, Berufseinsteiger und Studierende: - Praktikern und FA1/4hrungskrAften im strategischen und operativen Produktmanagement fA1/4r Industrie- und KonsumgA1/4ter dient es als aktuelles Nachschlagewerk zum schnellen Auffinden spezieller Themen, Vorgehensweisen und Methoden. - Berufseinsteiger und Schnittstellenmanager finden hier eine integrative Darstellung aller erfolgsrelevanten Faktoren. - Studierenden und Dozenten bietet das Buch eine gemeinsame Plattform, die neben den reinen Inhalten auch das GesamtverstAndnis der ZusammenhAnge und die Notwendigkeit der prozessorientierten Vorgehensweise vermittelt.
Modeling and Simulation have become endeavors central to all disciplines of Science and Engineering. They are used in the analysis of physical systems where they help us gain a better understanding of the functioning of our physical world. They are also important to the design of new engineering systems where they enable us to predict the behavior of a system before it is ever actually built. Modeling and Simulation are the only techniques available that allow us to analyze arbitrarily non-linear sys- tems accurately and under varying experimental conditions. Modeling and Simulation of Continuous Systems introduces the student to an important subclass of these techniques. They deal with the analysis of systems described through a set of ordinary or partial differential equations or through a set of difference equations. This volume introduces concepts of modeling physical systems through a set of differential and/or difference equations. The purpose is twofold: it enhances the scientific understanding of our physical world by codifying (organizing) knowledge about this world, and it supports engineering design by allowing us to assess the consequences of a particular design alternative before it is actually built. This text has a flavor of the mathematical discipline of dynamical systems, and is strongly oriented towards Newtonian physical science.
The purpose of this book is to give a basic understanding of rotor dynamics phenomena with the help of simple rotor models and subsequently, the modern analysis methods for real life rotor systems. This background will be helpful in the identification of rotor-bearing system parameters and its use in futuristic model-based condition monitoring and, fault diagnostics and prognostics. The book starts with introductory material for finite element methods and moves to linear and non-linear vibrations, continuous systems, vibration measurement techniques, signal processing and error analysis, general identification techniques in engineering systems, and MATLAB analysis of simple rotors. Key Features: * Covers both transfer matrix methods (TMM) and finite element methods (FEM) * Discusses transverse and torsional vibrations * Includes worked examples with simplicity of mathematical background and a modern numerical method approach * Explores the concepts of instability analysis and dynamic balancing * Provides a basic understanding of rotor dynamics phenomena with the help of simple rotor models including modern analysis methods for real life rotor systems.
Keep Up with Advancements in the Field of Rail Vehicle Design A thorough understanding of the issues that affect dynamic performance, as well as more inventive methods for controlling rail vehicle dynamics, is needed to meet the demands for safer rail vehicles with higher speed and loads. Design and Simulation of Rail Vehicles examines the field of rail vehicle design, maintenance, and modification, as well as performance issues related to these types of vehicles. This text analyzes rail vehicle design issues and dynamic responses, describes the design and features of rail vehicles, and introduces methods that address the operational conditions of this complex system. Progresses from Basic Concepts and Terminology to Detailed Explanations and Techniques Focused on both non-powered and powered rail vehicles-freight and passenger rolling stock, locomotives, and self-powered vehicles used for public transport-this book introduces the problems involved in designing and modeling all types of rail vehicles. It explores the applications of vehicle dynamics, train operations, and track infrastructure maintenance. It introduces the fundamentals of locomotive design, multibody dynamics, and longitudinal train dynamics, and discusses co-simulation techniques. It also highlights recent advances in rail vehicle design, and contains applicable standards and acceptance tests from around the world. * Includes multidisciplinary simulation approaches * Contains an understanding of rail vehicle design and simulation techniques * Establishes the connection between theory and many simulation examples * Presents simple to advanced rail vehicle design and simulation methodologies Design and Simulation of Rail Vehicles serves as an introductory text for graduate or senior undergraduate students, and as a reference for practicing engineers and researchers investigating performance issues related to these types of vehicles. |
You may like...
Welding - Modern Topics
Sadek Crisostomo Absi Alfaro, Wojciech Borek, …
Hardcover
Meriam's Engineering Mechanics…
James L. Meriam, L.G. Kraige, …
Paperback
R1,406
Discovery Miles 14 060
|