![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
Humanoid Robots: Modeling and Control provides systematic presentation of the models used in the analysis, design and control of humanoid robots. The book starts with a historical overview of the field, a summary of the current state of the art achievements and an outline of the related fields of research. It moves on to explain the theoretical foundations in terms of kinematic, kineto-static and dynamic relations. Further on, a detailed overview of biped balance control approaches is presented. Models and control algorithms for cooperative object manipulation with a multi-finger hand, a dual-arm and a multi-robot system are also discussed. One of the chapters is devoted to selected topics from the area of motion generation and control and their applications. The final chapter focuses on simulation environments, specifically on the step-by-step design of a simulator using the Matlab (R) environment and tools. This book will benefit readers with an advanced level of understanding of robotics, mechanics and control such as graduate students, academic and industrial researchers and professional engineers. Researchers in the related fields of multi-legged robots, biomechanics, physical therapy and physics-based computer animation of articulated figures can also benefit from the models and computational algorithms presented in the book.
This textbook addresses the most recent advances and main digital technologies used in farming. The reader will be able to understand the main concepts and techniques currently used to efficiently manage agricultural production systems. The book covers topics in a general and intuitive way, with examples and good illustrations.
Creating Precision Robots: A Project-Based Approach to the Study of Mechatronics and Robotics shows how to use a new "Cardboard Engineering" technique for the handmade construction of three precision microcomputer controlled robots that hit, throw and shoot. Throughout the book, the authors ensure that mathematical concepts and physical principles are not only rigorously described, but also go hand-in-hand with the design and constructional techniques of the working robot. Detailed theory, building plans and instructions, electric circuits and software algorithms are also included, along with the importance of tolerancing and the correct use of numbers in programming. The book is designed for students and educators who need a detailed description, mathematical analysis, design solutions, engineering drawings, electric circuits and software coding for the design and construction of real bench-top working robots.
Recent Advances in Chaotic Systems and Synchronization: From Theory to Real World Applications is a major reference for scientists and engineers interested in applying new computational and mathematical tools for solving complex problems related to modeling, analyzing and synchronizing chaotic systems. Furthermore, it offers an array of new, real-world applications in the field. Written by eminent scientists in the field of control theory and nonlinear systems from 19 countries (Cameroon, China, Ethiopia, France, Greece, India, Italia, Iran, Japan, Mexico, and more), this book covers the latest advances in chaos theory, along with the efficiency of novel synchronization approaches. Readers will find the fundamentals and algorithms related to the analysis and synchronization of chaotic systems, along with key applications, including electronic design, text and image encryption, and robot control and tracking.
Laser-Based Additive Manufacturing (LBAM) technologies, hailed by some as the "third industrial revolution," can increase product performance, while reducing time-to-market and manufacturing costs. This book is a comprehensive look at new technologies in LBAM of metal parts, covering topics such as mechanical properties, microstructural features, thermal behavior and solidification, process parameters, optimization and control, uncertainty quantification, and more. The book is aimed at addressing the needs of a diverse cross-section of engineers and professionals.
The inspection process is one of the most important steps in manufacturing industries because it safeguards high quality products and customer satisfaction. Manual inspection may not provide the desired accuracy. This book introduces and implements a new methodology and develops the supporting technologies for automated inspection planning based on Computer Aided Design (CAD) models. It also provides and implements an efficient link for automated operation based on Coordinate Measuring Machine (CMM). The link's output is a DMIS code programming file based on the inspection planning table that is executed on CMM.
Covers how product development, advancement, and international promotion are best accomplished through the practice of industrial engineering Illustrates how industrial engineering has a proven track record of aiding the survival of industry Discusses how new industries are more vulnerable to the adverse global developments in the global supply chain Includes “real world” case examples of managing products, services, and results Offers a range of industrial engineering tools for managing industry Presents templates for operational excellence in industry
1) Provides analytical solutions based on a three-phase model for composites of various structures 2) Identifies computational models to solve problems within all applications of composite materials 3) Constructs higher approximations of the Maxwell formula 4) Proposes efficient analytical algorithms ensuring reliable computational analysis
This book comprises the proceedings of the Virtual Seminar on Applied Mechanics 2021 organized by the Indian Society for Applied Mechanics. The contents of this volume focus on solid mechanics, fluid mechanics, biomechanics/biomedical engineering, materials science and design engineering. The authors are experienced practitioners and the chapters encompass up-to-date research in the field of applied mechanics. This book will appeal to researchers and scholars across the broad spectrum of engineering involving the application of mechanics in civil, mechanical, aerospace, automobile, bio-medical, material science, and more.
The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s announcement to end the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion continues to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. Building on the industry-leading IC Engines conference, the 2021 Powertrain Systems for Net-Zero Transport conference (7-8 December 2021, London, UK) focussed on the internal combustion engine’s role in Net-Zero transport as well as covered developments in the wide range of propulsion systems available (electric, fuel cell, sustainable fuels etc) and their associated powertrains. To achieve the net-zero transport across the globe, the life-cycle analysis of future powertrain and energy was also discussed. Powertrain Systems for Net-Zero Transport provided a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required, to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway and stationary power industries.
Explores Cost Impact of Process Intensification, and their relative magnitudes, as a universal metric. Covers a range of industrial applications, including heat and mass transfer, atomization and comminution, and nano-composite synthesis. Discusses the application of Process Intensification for clean technology and environmental remediation. Includes end-of-chapter problems, examples, and case studies.
Visualization research aims to provide insight into large, complicated data sets and the phenomena behind them. While there are di?erent methods of reaching this goal, topological methods stand out for their solid mathem- ical foundation, which guides the algorithmic analysis and its presentation. Topology-based methods in visualization have been around since the beg- ning of visualization as a scienti?c discipline, but they initially played only a minor role. In recent years,interest in topology-basedvisualization has grown andsigni?cantinnovationhasledto newconceptsandsuccessfulapplications. The latest trends adapt basic topological concepts to precisely express user interests in topological properties of the data. This book is the outcome of the second workshop on Topological Methods in Visualization, which was held March 4-6, 2007 in Kloster Nimbschen near Leipzig,Germany.Theworkshopbroughttogethermorethan40international researchers to present and discuss the state of the art and new trends in the ?eld of topology-based visualization. Two inspiring invited talks by George Haller, MIT, and Nelson Max, LLNL, were accompanied by 14 presentations by participants and two panel discussions on current and future trends in visualization research. This book contains thirteen research papers that have been peer-reviewed in a two-stage review process. In the ?rst phase, submitted papers where peer-reviewed by the international program committee. After the workshop accepted papers went through a revision and a second review process taking into account comments from the ?rst round and discussions at the workshop. Abouthalfthepapersconcerntopology-basedanalysisandvisualizationof ?uid?owsimulations;twopapersconcernmoregeneraltopologicalalgorithms, while the remaining papers discuss topology-based visualization methods in application areas like biology, medical imaging and electromagnetism.
Discusses effluent discharges into various ambient waters and predictive tools for design and regulatory purposes. Emphasis placed on numerical modeling and simulations, rather than general examples. Provides real technical solutions and tools for minimizing the impact on coasts and other water bodies. Covers the fundamentals in predicting the mixing of effluents resulting from desalination plants. Includes an introduction to OpenFOAM and its applications.
Provides derivation of the models used for calculating the risk and hazard of central oxygen toxicity Improves oxygen diving procedures described in the US Navy Diving Manual Includes procedures applicable to undertaking nitrox dives in combination with oxygen dives Pitches the material at highest technology readiness levels i.e. 9 TRL Aims to increase tactical capabilities of conducting diving special operations
Demystifying Numerical Models: Step-by Step Modeling of Engineering Systems is the perfect guide on the analytic concepts of engineering components and systems. In simplified terms, the book focuses on engineering characteristics and behaviors using numerical methods. Readers will learn how the computational aspects of engineering analysis can be applied to develop various engineering systems to a level that is fit for implementation.
Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics reports some of the latest research on modeling, identification and adaptive control for systems with nonsmooth dynamics (e.g., backlash, dead zone, friction, saturation, etc). The authors present recent research results for the modelling and control designs of uncertain systems with nonsmooth dynamics, such as friction, dead-zone, saturation and hysteresis, etc., with particular applications in servo systems. The book is organized into 19 chapters, distributed in five parts concerning the four types of nonsmooth characteristics, namely friction, dead-zone, saturation and hysteresis, respectively. Practical experiments are also included to validate and exemplify the proposed approaches. This valuable resource can help both researchers and practitioners to learn and understand nonlinear adaptive control designs. Academics, engineers and graduate students in the fields of electrical engineering, control systems, mechanical engineering, applied mathematics and computer science can benefit from the book. It can be also used as a reference book on adaptive control for servo systems for students with some background in control engineering.
Covers heat transfer techniques in utilization of base fluids application of phase change materials (PCMs) Describes preparation and characterization of nanofluids and nano based PCMs Explains how nanoscience can be utilized in heat transfer studies Reviews conventional heat transfer fluids
Theory of Elasticity provides a modern and integrated treatment of the foundations of solid mechanics as applied to the mathematical description of material behavior primarily to serve the needs of undergraduate, postgraduate and research students of Civil, Mechanical and Aeronautical engineering. Basic concepts, definitions, theory as well as related practical applications are discussed in a logical and concise manner. The book includes a pedagogical features such as worked examples and problems to consolidate the readers' understanding of fundamental principles and illustrates their applications in many practical situations. An important feature of this book lies in the use of linear theory of elasticity to obtain solutions to some of the specialized problems related to soil mechanics and foundation engineering in particular.
This book provides an introduction to the Human Centred Design of autonomous vehicles for professionals and students. While rapid progress is being made in the field of autonomous road vehicles the majority of actions and the research address the technical challenges, with little attention to the physical, perceptual, cognitive and emotional needs of humans. This book fills a gap in the knowledge by providing an easily understandable introduction to the needs and desires of people in relation to autonomous vehicles. The book is "human centred design" led, adding an important human perspective to the primarily technology-driven debates about autonomous vehicles. It combines knowledge from fields ranging from linguistics to electrical engineering to provide a holistic, multidisciplinary overview of the issues affecting the interactions between autonomous vehicles and people. It emphasises the constraints and requirements that a human centred perspective necessitates, giving balanced information about the potential conflicts between technical and human factors. The book provides a helpful introduction to the field of design ethics, to enhance the reader's awareness and understanding of the multiple ethical issues involved in autonomous vehicle design. Written as an accessible guide for design practitioners and students, this will be a key read for those interested in the psychological, sociological and ethical factors involved in automotive design, human centred design, industrial design and technology.
The art of applying mathematics to real-world dynamical problems such as structural dynamics, fluid dynamics, wave dynamics, robot dynamics, etc. can be extremely challenging. Various aspects of mathematical modelling that may include deterministic or uncertain (fuzzy, interval, or stochastic) scenarios, along with integer or fractional order, are vital to understanding these dynamical systems. Mathematical Methods in Dynamical Systems offers problem-solving techniques and includes different analytical, semi-analytical, numerical, and machine intelligence methods for finding exact and/or approximate solutions of governing equations arising in dynamical systems. It provides a singular source of computationally efficient methods to investigate these systems and includes coverage of various industrial applications in a simple yet comprehensive way.
Current environmental and energy concerns have led to lignin gaining increased attention in the last decade as a renewable biomass. Due to its structural and functional properties, such as antimicrobial behaviour, biodegradability, biocompatibility and ease of surface modifications, lignin-based materials have gained popularity in the biomedical field with applications ranging from tissue engineering scaffolds and wound dressing materials to drug delivery carriers. Using this book, the reader will learn about the chemistry of lignin, and the characterization, fabrication and properties of lignin-based composites with different matrices (thermosets, thermoplastics, elastomers etc.). In addition, the book illustrates how these materials are used in medical applications, covering drug delivery, wound dressing, tissue engineering, imaging, etc. Providing a neat overview of the current research for the biomaterials science community, this book is a one-stop resource for researchers and practitioners working on lignin-based biomaterials. For those active in the broader fields of materials science and biomedical engineering, this will be a useful reference and study aid.
Human Inspired Dexterity in Robotic Manipulation provides up-to-date research and information on how to imitate humans and realize robotic manipulation. Approaches from both software and hardware viewpoints are shown, with sections discussing, and highlighting, case studies that demonstrate how human manipulation techniques or skills can be transferred to robotic manipulation. From the hardware viewpoint, the book discusses important human hand structures that are key for robotic hand design and how they should be embedded for dexterous manipulation. This book is ideal for the research communities in robotics, mechatronics and automation.
The definitive book on tire mechanics by the acknowledged world expert Covers everything you need to know about pneumatic tires and their impact on vehicle performance, including mathematic modeling and its practical application Written by the acknowledged world authority on the topic and the name behind the most widely used model, Pacejka s Magic Formula Updated with the latest information on new and evolving tire models to ensure you can select the right model for your needs, apply it appropriately and understand its limitations In this well-known resource, leading tire model expert Hans Pacejka explains the relationship between operational variables, vehicle variables and tire modeling, taking you on a journey through the effective modeling of complex tire and vehicle dynamics problems. Covering the latest developments to Pacejka's own industry-leading model as well as the widely-used models of other pioneers in the field, the book combines theory, guidance, discussion and insight in one comprehensive reference. While the details of individual tire models are available in
technical papers published by SAE, FISITA and other automotive
organizations, Tire and Vehicle Dynamics remains the only reliable
collection of information on the topic and the standard go-to
resource for any engineer or researcher working in the area.
Mechanics of Carbon Nanotubes: Fundamentals, Modeling and Safety draws on the latest academic research and nanotechnology applications to provide a comprehensive guide on the most recent developments in the science of carbon nanotubes. The fundamentals of nanomechanics and mechanical behavior of carbon nanotubes are presented in initial chapters, followed by more advanced topics such as the classification of carbon nanotubes, carbon nanotubes in nanocomposites, multiwall carbon nanotubes, and recent trends. This book provides a system for the classification of carbon nanotubes into 20 classes, aiding correct selection for various applications, and includes the Atomic Registry Matrix Analysis for nanoscale interfaces, essential for design involving friction or sliding. Parametric maps are included to help readers pick the correct model for a particular CNT geometry, in addition to a thorough examination of the effective thickness paradox and safety issues related to CNTs, such as toxicity at high aspect ratio. Mechanics of Carbon Nanotubes is essential reading for anyone involved in research or engineering that includes carbon nanotubes, be they students or seasoned professionals in the field. It is particularly useful to those working with applications in the areas of microelectronics, robotics, aerospace, composites, or prosthetics. |
You may like...
Fuzzy Sets, Logics and Reasoning about…
Didier Dubois, Henri Prade, …
Hardcover
R4,246
Discovery Miles 42 460
Discrete-Time Approximations and Limit…
Yuliya Mishura, Kostiantyn Ralchenko
Hardcover
R4,234
Discovery Miles 42 340
Multiscale Modeling of Vascular Dynamics…
Huilin Ye, Zhiqiang Shen, …
Paperback
R750
Discovery Miles 7 500
Financial, Commercial, and Mortgage…
Arun J. Prakash, Dilip K. Ghosh
Hardcover
R2,998
Discovery Miles 29 980
|