![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
This volume highlights contributions of women mathematicians in the study of complex materials and includes both original research papers and reviews. The featured topics and methods draw on the fields of Calculus of Variations, Partial Differential Equations, Functional Analysis, Differential Geometry and Topology, as well as Numerical Analysis and Mathematical Modelling. Areas of applications include foams, fluid-solid interactions, liquid crystals, shape-memory alloys, magnetic suspensions, failure in solids, plasticity, viscoelasticity, homogenization, crystallization, grain growth, and phase-field models.
Although first published nearly thirty years ago, this book remains up-to-date, intellectually stimulating and realistic. Unlike most texts in the field, it relates design closely to the science and mathematics that are students' chief concern, and shows their relevance. It shows how to make simple but illuminating calculations, and how to achieve the insight and the invention that often result from them. Covering design principles in depth, this is, and remains, an original book: although some of the ideas which were novel in 1971 are now widely accepted, others remain new.
This pioneering volume comprehensively and systematically describes the Parameter Space Investigation (FSI) method, a novel concept for choosing the optimal design variables in solving multicriteria problems. Emphasizing the construction of the feasible solution set, the authors demonstrate state-of-the-art multicriteria optimization and identification. Applicable to a wide range of engineering problems in machines, structures and instrument design, this method enables readers to efficiently design higher-quality, lower cost objects with less metal requirements, vibration and noise, and with lower dynamic loads and energy consumption; determine optimal solutions, regardless of the number of criteria involved, and to identify relationships among different criteria and between criteria and design variables; accurately account for discrepancies between theoretical and actual characteristics, using a special set of adequacy criteria; and determine optimal design variables for complex finite element models. In addition, the book helps readers enhance the potential of the PSI method with theoretical investigations and algorithms for approximating the feasible solutions set and Pareto optimal set, facilitate proficient problem-solving by incorporating recently obtained results from the theory of uniformly distributed sequences, and evaluate design procedures by observing examples ranging from machine tools and agricultural equipment to automobiles and aviation. This practical, in-depth treatment of multicriteria optimization and engineering is essential for engineers and designers working in research and development of manufacturing machines, mechanisms and structures. It is also an importanttext for students of applied mechanics, mechanical engineering, optimal control and operation research.
Concern about the reduced availability and the increased cost of petroleum fuels prompted great efforts in recent years to reduce the fuel consumption of auto mobiles. The ongoing efforts to reduce fuel consumption have addressed many relevant factors, including increased engine performance, reduced friction, use of lightweight materials, and reduced aerodynamic drag. The results of the investigations assessing the various factors affecting fuel economy have been published in journals, conference proceedings, and in company and government reports. This proliferation of technical information makes it difficult for workers to keep abreast of aU developments. The material presented in this book brings together in a single volume much of the relevant materials, summarizes many of the state-of-the-art theories and data, and provides extensive lists of references. Thus, it is hoped that this book will be a useful reference for specialists and practicing engineers interested in the fuel economy of automobiles. J. C. HILLIARD o. S. SPRINGER vii CONTENTS 1. AUTOMOTIVE FUEL ECONOMY David Cole I. Introduction and Background. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . n. Fuel Economy Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 A. Engine................................................... 11 B. Drive Train. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 . . . . . . . . . . . . . . C. Vehicle Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 . . . . . . . . . . . . . D. Operating Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 . . . . . . . . . . . . E. Test Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 . . . . . . . . . . . . . . . . . 2. FUEL ECONOMY AND EMISSIONS J. T. Kummer I. Introduction .................................................. . 35 n. Emission Regulations .......................................... ."
EPD Congress is an annual collection that addresses extraction and processing metallurgy. The papers in this book are drawn from symposia held at the 2015 Annual Meeting of The Minerals, Metals & Materials Society. The 2015 edition includes papers from the following symposia: *Materials Processing Fundamentals *Solar Cell Silicon *High-Temperature Electrochemistry II
This second edition of this well-respected book covers all aspects of the traffic design and control of vertical transportation systems in buildings, making it an essential reference for vertical transportation engineers, other members of the design team, and researchers. The book introduces the basic principles of circulation, outlines traffic design methods and examines and analyses traffic control using worked examples and case studies to illustrate key points. The latest analysis techniques are set out, and the book is up-to-date with current technology. A unique and well-established book, this much-needed new edition features extensive updates to technology and practice, drawing on the latest international research.
For experiments, dimensional analysis enables the design, checks the validity, orders the procedure and synthesises the data. Additionally it can provide relationships between variables where standard analysis is not available. This widely valuable analysis for engineers and scientists is here presented to the student, the teacher and the researcher. It is the first complete modern text that covers developments over the last three decades while closing all outstanding logical gaps. Dimensional Analysis also lists the logical stages of the analysis, so showing clearly the care to be taken in its use while revealing the very few limitations of application. As the conclusion of that logic, it gives the author's original proof of the fundamental and only theorem. Unlike past texts, Dimensional Analysis includes examples for which the answer does not already exist from standard analysis. It also corrects the many errors present in the existing literature by including accurate solutions. Dimensional Analysis is written for all branches of engineering and science as a teaching book covering both undergraduate and postgraduate courses, as a guide for the lecturer and as a reference volume for the researcher.
This book gathers the latest advances, innovations, and applications in the field of computational engineering, as presented by leading international researchers and engineers at the 27th International Conference on Computational & Experimental Engineering and Sciences (ICCES), held online on January 8-12, 2022. ICCES covers all aspects of applied sciences and engineering: theoretical, analytical, computational, and experimental studies and solutions of problems in the physical, chemical, biological, mechanical, electrical, and mathematical sciences. As such, the book discusses highly diverse topics, including composites; bioengineering & biomechanics; geotechnical engineering; offshore & arctic engineering; multi-scale & multi-physics fluid engineering; structural integrity & longevity; materials design & simulation; and computer modeling methods in engineering. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
This volume contains the proceedings of the Workshop Energy Methods for Free Boundary Problems in Continuum Mechanics, held in Oviedo, Spain, from March 21 to March 23, 1994. It is well known that the conservation laws and the constitutive equations of Continuum Mechanics lead to complicated coupled systems of partial differential equations to which, as a rule, one fails to apply the techniques usually employed in the studies of scalar uncoupled equations such as, for instance, the maximum principle. The study of the qualitative behaviour of solutions of the systems re quires different techniques, among others, the so called, Energy Methods where the properties of some integral of a nonnegative function of one or several unknowns allow one to arrive at important conclusions on the envolved unknowns. This vol ume presents the state of the art in such a technique. A special attention is paid to the class of Free Boundary Problems. The organizers are pleased to thank the European Science Foundation (Pro gram on Mathematical treatment of free boundary problems), the DGICYT (Spain), the FICYT (Principado de Asturias, Spain) and the Universities of Oviedo and Complutense de Madrid for their generous financial support. Finally, we wish to thank Kluwer Academic Publishers for the facilities received for the publication of these Proceedings."
This book contains selected contributions from the 7th CIRP International Seminar on Computer Aided Tolerancing, which was held on 24-25 April 2001, at the Ecole Normale SupA(c)rieure de Cachan, France. Tolerancing research is of major importance in the fields of design, manufacturing and inspection. Designers use tolerancing as a tool for expressing functional intents and for managing geometrical variations during a product life cycle. This book focuses in particular on Geometrical Product Specification and Verification which is an integrated tolerancing view and metrology proposed for ISO/TC213. Common geometrical bases for a language allowing to describe both functional specification and inspection procedures are provided. An extended view of the uncertainty concept is also given. Geometric Product Specification and Verification: Functionality Integration is an excellent resource to anyone interested in computer aided tolerancing, as well as CAD/CAM/CAQ. It can also be used as a good starting point for advanced research activity and is a good reference for industrial issues. A global view of geometrical product specification, models for tolerance representation, tolerance analysis, tolerance synthesis, tolerance in manufacturing, tolerance management, tolerance inspection, tolerancing standards, industrial applications and CAT systems are also included.
The first publication of its kind in the field, this book describes comprehensively and systematically radio-frequency (rf) capacitive gas discharges of intermediate and low pressure and their application to gas laser excitation and to plasma processing. Text presents the physics underlying rf discharges along with techniques for obtaining such discharges, experimental methods and results, and theoretical and numerical modeling findings.
The book contains state-of the-art reviews in the area of effective properties of heterogeneous materials - the classical field at interface of materials science and solid mechanics. The primary focus is on thermo-mechanical properties, materials science applications, as well as computational aspects and new opportunities provided by rapidly increasing computer powers. The reviews are at the level that is appropriate for a substantial community of researchers working in this field, both at universities and in the industry, and to graduate students. The book can be used as supplementary reading to graduate level courses.
Expert guidance on theory and practice in condition-based
intelligent machine fault diagnosis and failure prognosis
This text contains the proceedings of the fifth conference on karst geohazards. It presents 65 papers that cover topics such as: groundwater contamination through sinkholes and the karst surface; stormwater drainage and flooding problems; and foundation considerations and improvements in karst.
A few years ago the Helmholtz Association (HGF) consisting of 15 research Institutions including the German Aerospace Center (DLR) started a network research program called 'Virtual Institutes'. The basic idea of this program was to establish research groups formed by Helmholtz research centers and universities to study and develop methods or technologies for future applications and educate young scientists. It should also enable and encourage the partners of this Virtual Institute after 3 years funding to continue their cooperation in other programs. Following this HGF request and chance the DLR Windtunnel Department of the Institute of Aerodynamics and Flow Technology took the initiative and established a network with other DLR institutes and German u- versities RWTH Aachen, University of Stuttgart and Technical University Munich. The main goal of this network was to share the experience in system analysis, ae- dynamics and material science for aerospace for improving the understanding and applicability of some key technologies for future reusable space transportation s- tems. Therefore, the virtual institute was named RESPACE (Key Technologies for Re- Usable Space Systems).
Discusses the requirements for establishing, maintaining and revitalizing an efficient engineering documentation control system for use by technical and manufacturing personnel in private industry. The book stresses simplicity and common sense in the development and implementation of all control practices, procedures and forms. A list of effective interchangeability rules, a glossary of essential engineering documentation terms and an extensive bibliography of key literature sources are provided.;This work is intended for mechanical, computer, design, manufacturing and civil engineers; program, purchasing and documentation and production control managers; and upper-level undergraduate, graduate and continuing-education students in these fields.
Thermomechanics of Solids and Structures: Physical Mechanisms, Continuum Mechanics, and Applications covers kinematics, balance equations, the strict thermodynamic frameworks of thermoelasticity, thermoplasticity, creep covering constitutive equations, the physical mechanisms of deformation, along with computational aspects. The book concludes with coverage of the thermodynamics of solids and applications of the constitutive three-dimensional model to both one-dimensional homogeneous and composite beam structures. Practical applications of the theories and techniques covered are emphasized throughout the book, with analytical solutions provided for various problems.
The realm of ultraprecise mechanisms, for example in controlling
motion to small fractions of a micrometer, is encroaching rapidly
into many fields of technology. This book provides a bridge for
those moving from either an engineering or physics background
towards the unique challenges offered by ultraprecision mechanisms.
Using case study examples this book provides a guide to basic
techniques and gives vital technical, analytical and practical
information.
This book offers frameworks for the material modeling of gradient materials both for finite and small deformations within elasticity, plasticity, viscosity, and thermomechanics. The first chapter focuses on balance laws and holds for all gradient materials. The next chapters are dedicated to the material modeling of second and third-order materials under finite deformations. Afterwards the scope is limited to the geometrically linear theory, i.e., to small deformations. The next chapter offers an extension of the concept of internal constraints to gradient materials. The final chapter is dedicated to incompressible viscous gradient fluids with the intention to describe, among other applications, turbulent flows, as already suggested by Saint-Venant in the middle of the 19th century.
Computational kinematics is an enthralling area of science with a rich spectrum of problems at the junction of mechanics, robotics, computer science, mathematics, and computer graphics. The covered topics include design and optimization of cable-driven robots, analysis of parallel manipulators, motion planning, numerical methods for mechanism calibration and optimization, geometric approaches to mechanism analysis and design, synthesis of mechanisms, kinematical issues in biomechanics, construction of novel mechanical devices, as well as detection and treatment of singularities. The results should be of interest for practicing and research
engineers as well as Ph.D. students from the fields of mechanical
and electrical engineering, computer science, and computer
graphics.
Product development is one of the most important drivers of innovation. Methods, procedures and systems evoke, enable and support innovation. The papers presented in this book, show that answers can only be composed out of a variety of solutions where psychological, economical and technical research results are taken into account. The proceedings represent trends in Product Development concerning industrial users and vendors as well as scientific research aspects. The following topics are covered: Design Theory, Product Design, Requirements, Collaborative Engineering, Complex Design, Mechatronics, Reverse Engineering, Virtual Prototyping, CAE, KBE and PLM.
This book is devoted to the optimization of product design and manufacturing. It contains selected and carefully composed articles based on presentations given at the IDMME conference, held in CompiA]gne University of Technology, France, in 1998. The authors are all involved in cutting-edge research in their respective fields of specialization. The integration of manufacturing constraints and their optimization in the design process is becoming more and more widespread in the development of mechanical products or systems. There is a clear industrial need for these kinds of methodologies. Important - but still unsolved - problems are related to the definition of design processes, the choice of optimal manufacturing processes, and their integration through coherent methodologies in adapted environments. The main topics addressed in this book are: analysis and optimization of mechanical parts and products (computational structural mechanics, optimum design of structures, finite element solvers, computer-aided geometry, modeling and synthesis of mechanisms); analysis and optimization for fabrication and manufacturing systems (modeling of forming processes, modeling for control and measurement, tolerancing and assembly in manufacturing, off-line programming and optimal parameters for machining, robotics, welding); methodological aspects of integrated design and manufacturing (new methodologies for design with constraints, communication tools, training applications, computer-aided manufacturing). Apart from giving a thorough theoretical background, a very important theme is the relation between research and industrial applications. The book is of interest for engineers, researchers and PhDstudents who are involved in the optimization of design and manufacturing processes.
Alternating current (AC) induction and synchronous machines are frequently used in variable speed drives with applications ranging from computer peripherals, robotics, and machine tools to railway traction, ship propulsion, and rolling mills. The notable impact of vector control of AC drives on most traditional and new technologies, the multitude of practical configurations proposed, and the absence of books treating this subject as a whole with a unified approach were the driving forces behind the creation of this book.
This updated and enlarged Second Edition provides in-depth, progressive studies of kinematic mechanisms and offers novel, simplified methods of solving typical problems that arise in mechanisms synthesis and analysis - concentrating on the use of algebra and trigonometry and minimizing the need for calculus.;It continues to furnish complete coverage of: key concepts, including kinematic terminology, uniformly accelerated motion, and the properties of vectors; graphical techniques for both velocity and acceleration analysis; analytical techniques; and ready-to-use computer and calculator programmes for analyzing basic classes of mechanisms.;This edition supplies detailed explications of such new topics as: gears, gear trains, and cams; velocity and acceleration analyses of rolling elements; acceleration analysis of sliding contact mechanisms by the effective component method; four-bar analysis by the parallelogram method; and centre of curvature determination methods. |
You may like...
Hyperbolic Problems: Theory, Numerics…
Michael Fey, Rolf Jeltsch
Hardcover
R4,293
Discovery Miles 42 930
Numerical Methods for PDEs - State of…
Daniele Antonio Di Pietro, Alexandre Ern, …
Hardcover
R2,690
Discovery Miles 26 900
Stability Theory for Dynamic Equations…
Anatoly A. Martynyuk
Hardcover
The Plant Hormone Ethylene - Stress…
Nafees A. Khan, Antonio Ferrante, …
Paperback
R2,941
Discovery Miles 29 410
Advances in Cancer Research, Volume 152
Paul B. Fisher, Kenneth D. Tew
Hardcover
R4,165
Discovery Miles 41 650
|