![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
Since the first edition published more than 100 years ago, Machinery's Handbook has been acknowledged as an exceptionally authoritative and comprehensive, yet highly practical, and easy-to-use tool, and the new 31st edition has grown to nearly 3,000 pages. The Guide to the Use of Tables and Formulas in the Machinery's Handbook, 31st Edition, is designed to maximize the enormous practical value of the latest, greatest edition of this invaluable engineering resource, offering useful information on how to make full use of the Machinery's Handbook in solving problems on the job. Features Revised to reflect numerous changes made in the new 31st edition, with specific cross references to quickly locate information in the far larger book, the Guide enables users to become familiar with the Handbook's vast range of vital content. Offering more than 150 worked-out examples and nearly 500 review questions (with answers) specially selected for engineers, apprentices, and students, the Guide addresses problems commonly encountered in manufacturing and metalworking. By following practical techniques explained in the Guide and cross-referenced to the Handbook, readers will enhance their ability to reach specific information and solutions more quickly and easily. The Guide also is sold as a standalone eBook and is part of the Machinery's Handbook 31 Digital Edition, which includes the complete contents of the 31st edition, and more. For information on these digital versions, visit the Industrial Press eBookStore site at ebooks.industrialpress.com. Erik Valdemar Oberg, born 1881, died 1951. Dimensions and Areas of Circles. Chords, Segments, Hole Circles, And Spheres. Formulas and Their Rearrangement. Spreadsheet Calculations. Calculations Involving Logarithms. Dimensions, Areas, and Volumes of Geometrical Figures. Geometrical Propositions and Constructions. Functions of Angles. Solution of Right-angle Triangles. Solution of Oblique Triangles. Figuring Tapers. Tolerances and Allowances for Machine Parts. Using Standards Data and Information. Standard Screw and Pipe Threads. Problems in Mechanics. Strength of Materials. Design of Shafts and Keys For Power Transmission. Splines. Problems in Designing and Cutting Gears. Speeds, Feeds, and Machining Power, Numerical Control. The Metric System. General Review Questions. Answers to Practice Exercises. Conversion Factors. Index.
This book discusses the application of independent continuous mapping method in predicting and the optimization of the mechanical performance of buckling with displacement, stress and static constrains. Each model is explained by mathematical theories and followed by simulation with frequently-used softwares. With abundant project data, the book is an essential reference for mechanical engineers, structural engineers and industrial designers.
Motion and vibration control is a fundamental technology for the development of advanced mechanical systems such as rnechatrotrics, vehicle syatems, robots, spacecraft. and rotating machinery. Often the implementation of high performance, low power consumption designs is only possible with the use of this techology. It is also vital to the mitigation of natural hazards for large structures such as high-rise buildings and tall bridges, and to the application of flexible structures such as space stations and satellites. Recent innovations in relevant hardware, sendors, actuators, and software have facilitated new research in this area. This book deals with the interdisciplinary aspects of emerging technologies of motion and vibration control for mechanical, civil and aerospace systems. It covers a broad range of applications (e.g. vehicle dynamics, senors, actuators, rotor dynamics, biologically inspired mechanics, humanoid robot dynamcics and control. etc.) and also provides advances in the field of fundamental research e.g. control of fluid/structure integration, nonlinar control theory, etc. Each of the contributors is a recognised specialist in his field, and this gives the book relevance and authority in a wide range of areas.
This book collects a high-quality selection of contemporary research and case studies on the complexity resulting from human/reliability management in industrial plants and critical infrastructures. It includes: Human-error management issues-considering how to reduce human errors as much as possible. Reliability management issues-considering the ability of a system or component to function under certain conditions for a specified period of time. Thus, the book analyses globally the problem regarding the human and reliability management to reduce human errors as much as possible and to ensure safety and security in critical infrastructures. Accidents continue to be the major concern in "critical infrastructures", and human factors have been proved to be the prime causes to accidents. Clearly, human dynamics are a challenging management function to guarantee reliability, safety and costs reduction in critical infrastructures. The book is enriched by figures, examples and extensive case studies and is a valuable reference resource for those with involved in disaster and emergency planning as well as researchers interested both in theoretical and practical aspects.
While there are many books about Finite Element Methods, this is among the first volume devoted to the application of FEM in spring design. It has been compiled by the working group on Finite Element Analysis of Springs, sponsored by the Japan Society of Spring Research. The monograph considers the wide spectrum of spring shapes and functions, enabling readers to use FEM to optimize designs for even the most advanced engineering cases. This book provides the theoretical background and state-of-the-art methodologies for numerical spring analysis. It also employs and explains many real-world design examples, calculated by commercial software and then compared with experimental data, to illustrate the applicability of FEM to spring analysis. Engineers already dealing with spring design will find this an excellent means of learning how to use FEM in their work, while others will find here a helpful introduction to modern spring technology and design.
In this textbook, fundamental methods for model-based design of mechatronic systems are presented in a systematic, comprehensive form. The method framework presented here comprises domain-neutral methods for modeling and performance analysis: multi-domain modeling (energy/port/signal-based), simulation (ODE/DAE/hybrid systems), robust control methods, stochasticdynamic analysis, and quantitative evaluation of designs using system budgets. The model framework is composed of analytical dynamic models for important physical and technical domains of realization of mechatronic functions, such as multibody dynamics, digital information processing and electromechanical transducers. Building on the modeling concept of a technology-independent generic mechatronic transducer, concrete formulations for electrostatic, piezoelectric, electromagnetic, and electrodynamic transducers are presented. More than 50 fully worked out design examples clearly illustrate these methods and concepts and enable independent study of the material.
Among the wide variety of nonlinear mechanical systems, it appears possible to distinguish a representative class which may be characterized by the presence of threshold nonlinear positional forces. Such systems demonstrate a sudden change in the behavior of elastic and dissipative forces. This monograph addresses the systematic representation of the new methods of analysis developed by the authors recently as applied to such systems. Specific features of dynamic processes of these systems are studied. Special attention is given to an analysis of different resonant phenomena taking unusual and diverse forms. These methods are applied to the analysis of mechanical systems designed for the generation and transformation of intensive processing of an impulsive nature. These are machines for rock fragmentation, impact processing, special types of shock testing machines and many other types of machinery.
As environmental legislation concerning leaks and emissions
tightens this practical reference manual is a must for all those
involved with systems using leak-free (or seal-less) pumps or
compressors. This handbook will enable you to understand the
various designs and properties of leak-free pumps and select the
right pump or compressor to ensure leak free systems whatever the
application.
This book consists of review articles by experts on recent developments in mechanical engineering sciences. The book has been composed to commemorate the Silver Jubilee of the Mechanical Engineering Department, Indian Institute of Technology Guwahati. It includes articles on modern mechanical sciences subjects of advanced simulation techniques and molecular dynamics, microfluidics and microfluidic devices, energy systems, intelligent fabrication, microscale manufacturing, smart materials, computational techniques, robotics and their allied fields. It presents the upcoming and emerging areas in mechanical sciences which will help in formulation of new courses and updating existing curricula. This book will help the academicians and policy makers in the field of engineering education to chart out the desired path for the development of technical education.
This book originally appeared as a text prepared for the Defense Nuclear Agency to summarize research on dynamic pulse buckling, by the authors and their colleagues at SRI International, during the period from 1960 to 1980. The original printing of 300 copies by the DNA Press was followed shortly by a small second printing to meet the demand by readers who heard of the book from the primary recipients. This supply was also quickly exhausted, to researchers and practicing engineers outside the DNA community and to academics who wanted to include the material in courses on elastic and plastic stability of structures. Commercial publication by Martinus Nijhoff Publishers was therefore undertaken to meet the needs of this broader community. The objective of the book was to gather into a cohesive whole material that had been published in reports and the open literature during the two decade period. In the process of knitting this material together, a substantial amount of new work was done. The book therefore contains many new results never published in the open literature.
This book introduces readers to the application of fracture mechanics and mesomechanics to the analysis of the fracture behaviors of wood and bamboo. It presents a range of research methods to study the fracture behaviors of wood and bamboo, taking into account their various fracture mechanisms resulting from differences in their macroscopic and microscopic structures. It combines theoretical analysis with experiments, as well as various mathematical tools and experimental approaches. The research methods are illustrated by simple schematic diagrams, and the results obtained are largely presented as tables and figures, helping to make the book concise and compact. As such, it provides a valuable guide to the development of new biocomposites that possess exceptional strength and toughness properties and successfully overcome the shortcomings of biomaterials.
This book presents the most significant contributions to the DINAME 2017 conference, covering a range of dynamic problems to provide insights into recent trends and advances in a broad variety of fields seldom found in other proceedings volumes. DINAME has been held every two years since 1986 and is internationally recognized as a central forum for discussing scientific achievements related to dynamic problems in mechanics. Unlike many other conferences, it employs a single-session format for the oral presentations of all papers, which limits the number of accepted papers to roughly 100 and makes the evaluation process extremely rigorous. The papers gathered here will be of interest to all researchers, graduate students and engineering professionals working in the fields of mechanical and mechatronics engineering and related areas around the globe.
Mechanics as a fundamental science in Physics and in Engineering deals with interactions of forces resulting in motion and deformation of material bodies. Similar to other sciences Mechanics serves in the world of Physics and in that of Engineering in a di?erent way, in spite of many and increasing inter- pendencies. Machines and mechanisms are for physicists tools for cognition and research, for engineers they are the objectives of research, according to a famous statement of the Frankfurt physicist and biologist Friedrich Dessauer. Physicists apply machines to support their questions to Nature with the goal of new insights into our physical world. Engineers apply physical knowledge to support the realization process of their ideas and their intuition. Physics is an analytical Science searching for answers to questions concerning the world around us. Engineering is a synthetic Science, where the physical and ma- ematical fundamentals play the role of a kind of reinsurance with respect to a really functioning and e?ciently operating machine. Engineering is also an iterative Science resulting in typical long-time evolutions of their products, but also in terms of the relatively short-time developments of improving an existing product or in developing a new one. Every physical or mathematical Science has to face these properties by developing on their side new methods, new practice-proved algorithms up to new fundamentals adaptable to new technological developments. This is as a matter of fact also true for the ?eld of Mechanics.
High Pressure Vessels is the only book to present timely information on high pressure vessel design for student engineers, mechanical and chemical engineers who design and build these vessels, and for chemical engineers, plant engineers and facilities managers who use them. It concentrates on design issues, giving the reader comprehensive coverage of the design aspects of the ASME High Pressure System Standard and the forthcoming ASME High Pressure Vessel Code. Coverage of the safety requirements of these new standards is included, as well as offering the reader examples and original data, a glossary of terms, SI conversions, and lists of references.
This book is intended primarily as a teaching text, as well as a reference for individual study in the behavior of thin walled structural components. Such structures are widely used in the engineering profession for spacecraft, missiles, aircraft, land-based vehicles, ground structures, ocean craft, underwater vessels and structures, pressure vessels, piping, chemical processing equipment, modern housing, etc. It presupposes that the reader has already completed one basic course in the mechanics or strength of materials. It can be used for both undergraduate and graduate courses. Since beams (columns, rods), plates and shells comprise components of so many of these modern structures, it is necessary for engineers to have a working knowledge of their behavior when these structures are subjected to static, dynamic (vibration and shock) and environmental loads. Since this text is intended for both teaching and self-study, it stresses fundamental behavior and techniques of solution. It is not an encyclopedia of all research or design data, but provides the reader the wherewithal to read and study the voluminous literature. Chapter 1 introduces the three-dimensional equations oflinear elasticity, deriving them to the extent necessary to treat the following material. Chapter 2 presents, in a concise way, the basic assumptions and derives the governing equations for classical Bernoulli-Euler beams and plates in a manner that is clearly understood.
T Level Engineering is written to cover the core elements of the new T Level Engineering qualifications. It provides essential information for T Level Engineering students and teachers, and will be useful as the student moves into higher education or an apprenticeship. The new T Level qualifications offer a realistic option to A Level and other vocational options. After completing a T Level in Engineering the student has a number of options including university courses and higher level apprenticeships. This book is written in an accessible fashion, no previous knowledge of engineering or technology is required, as all the technical terms are readily explained and a detailed glossary and list of abbreviations are included. Whether you are a student, tutor, or work placement manager you will surely find this book an enjoyable read and a handy reference book on your shelf. Andrew Livesey, MA, CEng is an experienced lecturer in engineering at Ashford College, Kent. He was a member of the DfE committee responsible for developing the T Levels and is a T Level Ambassador. His Routledge publications include: Basic Motorsport Engineering (2011), Advanced Motorsport Engineering (2012), The Repair of Vehicle Bodies (2018), Practical Motorsport Engineering (2018), Bicycle Engineering and Technology (2021) and Motorcycle Engineering (2021).
Considerably simplified models of macroscopic material behavior, such as the idealization for metals of elastic-time independent plastic response with a yield (onset) criterion, have served the engineering profession well for many years. They are still basic to the design and analysis of most structural applications. In the need to use materials more effectively, there are circumstances where those traditional models are not adequate, and constitutive laws that are more physically realistic have to be employed. This is especially relevant to conditions where the inherent time dependence of inelastic deformations, referred to as "viscoplasticity," is pronounced such as at elevated temperatures and for high strain rates. Unified theories of elastic-viscoplastic material behavior, which are primarily applicable for metals and metallic alloys, combine all aspects of inelastic response into a set of time dependent equations with a single inelastic strain rate variable. For such theories, creep under constant stress, stress relaxation under constant strain, and stress-strain relations at constant rates are each special cases of a general formulation. Those equations mayor may not include a yield criterion, but models which do not separate a fully elastic region from the overall response could be considered "unified" in a more general sense. The theories have reached a level of development and maturity where they are being used in a number of sophisticated engineering applications. However, they have not yet become a standard method of material representation for general engineering practice.
This book focuses on nanocarbons (carbon nanotubes, graphene, nanoporous carbon, and carbon black) and related materials for energy conversion, including fuel cells (predominately proton exchange membrane fuel cells [PEMFC]), Li-ion batteries, and supercapacitors. Written by a group of internationally recognized researchers, it offers an in-depth review of the structure, properties, and functions of nanocarbons, and summarizes recent advances in the design, fabrication and characterization of nanocarbon-based catalysts for energy applications. As such, it is an invaluable resource for graduate students, academics and industrial scientists interested in the areas of nanocarbons, energy materials for fuel cells, batteries and supercapacitors as well as materials design, and supramolecular science.
This book contains a selection of research papers presented at the 11th and 12th International Ship Stability Workshops (Wageningen, 2010 and Washington DC, 2011) and the 11th International Conference on Stability of Ships and Ocean Vehicles (Athens, 2012). The book is directed toward the ship stability community and presents innovative ideas concerning the understanding of the physical nature of stability failures and methodologies for assessing ship stability. Particular interest of the readership is expected in relation with appearance of new and unconventional types of ships; assessment of stability of these ships cannot rely on the existing experience and has to be based on the first principles. As the complexity of the physical processes responsible for stability failure have increasingly made time-domain numerical simulation the main tool for stability assessment, particular emphasis is made on the development an application of such tools. The included papers have been selected by the editorial committee and have gone through an additional review process, with at least two reviewers allocated for each. Many of the papers have been significantly updated or expanded from their original version, in order to best reflect the state of knowledge concerning stability at the time of the book's publication. The book consist of four parts: Mathematical Model of Ship Motions in Waves, Dynamics of Large Motions, Experimental Research and Requirements, Regulations and Operations.
Mastering modelling, and in particular numerical models, is becoming a crucial and central question in modern computational mechanics. Various tools, able to quantify the quality of a model with regard to another one taken as the reference, have been derived. Applied to computational strategies, these tools lead to new computational methods which are called "adaptive." The present book is concerned with outlining the state of the art and the latest advances in both these important areas. Papers are selected from a Workshop (Cachan 17-19 September 1997) which is the third of a series devoted to Error Estimators and Adaptivity in Computational Mechanics. The Cachan Workshop dealt with latest advances in adaptive computational methods in mechanics and their impacts on solving engineering problems. It was centered too on providing answers to simple questions such as: what is being used or can be used at present to solve engineering problems? What should be the state of art in the year 2000? What are the new questions involving error estimators and their applications?
This book presents operational modal analysis (OMA), employing a coherent and comprehensive Bayesian framework for modal identification and covering stochastic modeling, theoretical formulations, computational algorithms, and practical applications. Mathematical similarities and philosophical differences between Bayesian and classical statistical approaches to system identification are discussed, allowing their mathematical tools to be shared and their results correctly interpreted. The authors provide their data freely in the web at https://doi.org/10.7910/DVN/7EVTXG Many chapters can be used as lecture notes for the general topic they cover beyond the OMA context. After an introductory chapter (1), Chapters 2-7 present the general theory of stochastic modeling and analysis of ambient vibrations. Readers are first introduced to the spectral analysis of deterministic time series (2) and structural dynamics (3), which do not require the use of probability concepts. The concepts and techniques in these chapters are subsequently extended to a probabilistic context in Chapter 4 (on stochastic processes) and in Chapter 5 (on stochastic structural dynamics). In turn, Chapter 6 introduces the basics of ambient vibration instrumentation and data characteristics, while Chapter 7 discusses the analysis and simulation of OMA data, covering different types of data encountered in practice. Bayesian and classical statistical approaches to system identification are introduced in a general context in Chapters 8 and 9, respectively. Chapter 10 provides an overview of different Bayesian OMA formulations, followed by a general discussion of computational issues in Chapter 11. Efficient algorithms for different contexts are discussed in Chapters 12-14 (single mode, multi-mode, and multi-setup). Intended for readers with a minimal background in mathematics, Chapter 15 presents the 'uncertainty laws' in OMA, one of the latest advances that establish the achievable precision limit of OMA and provide a scientific basis for planning ambient vibration tests. Lastly Chapter 16 discusses the mathematical theory behind the results in Chapter 15, addressing the needs of researchers interested in learning the techniques for further development. Three appendix chapters round out the coverage. This book is primarily intended for graduate/senior undergraduate students and researchers, although practitioners will also find the book a useful reference guide. It covers materials from introductory to advanced level, which are classified accordingly to ensure easy access. Readers with an undergraduate-level background in probability and statistics will find the book an invaluable resource, regardless of whether they are Bayesian or non-Bayesian. |
![]() ![]() You may like...
Mathematical Modeling for Complex Fluids…
Michel Deville, Thomas B. Gatski
Hardcover
R1,549
Discovery Miles 15 490
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,660
Discovery Miles 26 600
Finite Elements and Fast Iterative…
Howard Elman, David Silvester, …
Hardcover
R4,587
Discovery Miles 45 870
Finite Volumes for Complex Applications…
Clement Cances, Pascal Omnes
Hardcover
R5,202
Discovery Miles 52 020
Fluid-Structure-Sound Interactions and…
Yu Zhou, Motoaki Kimura, …
Hardcover
R6,821
Discovery Miles 68 210
Experimental and Theoretical Advances in…
Jaime Klapp, Anne Cros, …
Hardcover
R5,679
Discovery Miles 56 790
Munson, Young and Okiishi's Fundamentals…
Andrew L Gerhart, John I Hochstein, …
Paperback
R1,529
Discovery Miles 15 290
|