![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
Microsystems are an important success factor in the automobile industry. In order to fulfil the customers' requests for safety convenience and vehicle economy, and to satisfy environmental requirements, microsystems are becoming indispensable. Thus a large number of microsystem applications came into the discussion. With the international conference AMAA 2000, VDI/VDE-IT provides a platform for the discussion of all MST relevant components for automotive applications. The conference proceedings gather the papers by authors from automobile suppliers and manufacturers.
The integration of manufacturing constraints and their optImIzation within the design process of mechanical products and systems are now an industrial priority. Following the first two IDMME conferences in Nantes in 1996 and Compiegne in 1998, the purpose of the IDMME'2000 conference was to present recent developments in these areas and new areas within the product and process development theme. The original initiative of the conference is mainly due to the efforts of the French AIP-PRIMECA group (Pool of Computer Resources for Mechanics). The organizing committee and the local organizing institutions (Concordia University, Ecole Poly technique de Montreal, and McGill University) contributed to the success of the conference. The presentation of 190 papers and the presence of more than 225 researchers coming from more than 20 countries demonstrate the success of the initiative. This book contains 57 of these papers selected by an International Scientific Committee: Chairman: C. Fortin (Canada) Co-chairmen: P. Chedmail (France), G. Cognet (France), C. Mascle (Canada), J. Pegna (Canada) J. Angeles (Canada) P. Martin (France) J. L. Batoz (France) C. McMahon (U. K. ) J. C. Bocquet (France) M. Mantyla (Finland) A. - Bernard (France) J. L. Maxwell (USA) P. Bourdet (France) N. M. Patrikalakis (USA) A Clement (France) J. P. Pelle (France) D. Cochran (USA) B. Peseux (France) D. Coutellier (France) D. Play (France) A- Dalsky (Russia) M. Pratt (USA) D. A. Dornfeld (USA) B. Ravani (USA) D. Deneux (France) A. Riviere (France) G. Gogu (France) C.
This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material. Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials. The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthermore, the book reviews a large number of experimental results on these failure mechanisms. The book will benefit structural and materials engineers and researchers seeking a "birds-eye" view of possible failure mechanisms in structures along with the associated failure and structural mechanics.
The design of nonlinear controllers for mechanical systems has been an ex tremely active area of research in the last two decades. From a theoretical point of view, this attention can be attributed to their interesting dynamic behavior, which makes them suitable benchmarks for nonlinear control the oreticians. On the other hand, recent technological advances have produced many real-world engineering applications that require the automatic con trol of mechanical systems. the mechanism for de Often, Lyapunov-based techniques are utilized as veloping different nonlinear control structures for mechanical systems. The allure of the Lyapunov-based framework for mechanical system control de sign can most likely be assigned to the fact that Lyapunov function candi dates can often be crafted from physical insight into the mechanics of the system. That is, despite the nonlinearities, couplings, and/or the flexible effects associated with the system, Lyapunov-based techniques can often be used to analyze the stability of the closed-loop system by using an energy like function as the Lyapunov function candidate. In practice, the design procedure often tends to be an iterative process that results in the death of many trees. That is, the controller and energy-like function are often constructed in concert to foster an advantageous stability property and/or robustness property. Fortunately, over the last 15 years, many system the ory and control researchers have labored in this area to produce various design tools that can be applied in a variety of situations."
This book addresses the need for a fundamental understanding of the physical origin, the mathematical behavior and the numerical treatment of models which include microstructure. Leading scientists present their efforts involving mathematical analysis, numerical analysis, computational mechanics, material modelling and experiment. The mathematical analyses are based on methods from the calculus of variations, while in the numerical implementation global optimization algorithms play a central role. The modeling covers all length scales, from the atomic structure up to macroscopic samples. The development of the models ware guided by experiments on single and polycrystals and results will be checked against experimental data.
The proceedings from Parallel CFD 2006 covers all aspects of
parallel computings and its applications. Although CFD is one of
basic tools for design procedures to produce machineries, such as
automobiles, ships, aircrafts, etc., large scale parallel computing
has been realized very recently, especially for the manufactures.
Various applications in many areas could be experienced including
acoustics, weather prediction and ocean modeling, flow control,
turbine flow, fluid-structure interaction, optimization, heat
transfer, hydrodynamics.
It is a great pleasure for me to introduce this book which has the main ambition to make thermodynamics more directly accessible to engineers and physicists by stressing the analogies with the other physical domains; this science has discouraged more than a few students. The book comes from the meeting of two persons: 1. Jean Thoma, inventor of hydrostatic machines and transmissions, pro fessor at the University of Waterloo (Canada), expert in simulation and pilgrim for the promotion of bond graphs around the world. 2. Belkacem Ould Bouamama, associated professor at the University of Science and Technology in Lille, France, specialist in industrial control and seduced by the richness and structure of the bond graph method. Thermodynamics is a difficult subject; its concepts like entropy, enthalpy, etc. are not intuitive and often very abstract. For this reason, it is current practice to neglect the thermal aspects, although they are necessarily there in all physical phenomena, and to use isothermal models. This is equivalent to think that the system is immersed in an infinite temperature reservoir and maintains its temperature constant even if it receives or dissipates electric and other type of energy. For heat transfer and variable temperature, if it should be included, the classical approach is to study the changes between equilibrium states, and not the process itself, which is more a thermostatic than a thermodynamic approach. This is justified when only the constraints of equilibrium state must be satisfied."
This book brings together papers from all spheres of mechanical engineering related to gears and transmissions, from fundamentals to advanced applications, from academic results in numerical and experimental research, to new approaches to gear design and aspects of their optimization synthesis and to the latest developments in manufacturing. Furthermore, this volume honours the work of Faydor L. Litvin on the 100th anniversary of this birth. He is acknowledged as the founder of the modern theory of gearing. An exhaustive list of his contributions and achievements and a biography are included.
Mastering modelling, and in particular numerical models, is becoming a crucial and central question in modern computational mechanics. Various tools, able to quantify the quality of a model with regard to another one taken as the reference, have been derived. Applied to computational strategies, these tools lead to new computational methods which are called "adaptive." The present book is concerned with outlining the state of the art and the latest advances in both these important areas. Papers are selected from a Workshop (Cachan 17-19 September 1997) which is the third of a series devoted to Error Estimators and Adaptivity in Computational Mechanics. The Cachan Workshop dealt with latest advances in adaptive computational methods in mechanics and their impacts on solving engineering problems. It was centered too on providing answers to simple questions such as: what is being used or can be used at present to solve engineering problems? What should be the state of art in the year 2000? What are the new questions involving error estimators and their applications?
This book is composed of chapters that focus specifically on technological developments by distinguished figures in the history of MMS (Mechanism and Machine Science). Biographies of well-known scientists are also included to describe their efforts and experiences and surveys of their work and achievements and a modern interpretation of their legacy are presented. After the first two volumes, the papers in this third volume again cover a wide range within the field of the History of Mechanical Engineering with specific focus on MMS and will be of interest and motivation to the work (historical or not) of many.
The Second International Computational Wind Engineering Symposium was held in Colorado, USA during August 1996 and presented papers on the popular application of CFD concepts. These proceedings contain a set of invited papers providing state-of-the-art reviews on subjects such as CFD turbulence models, bluff body aerodynamics, terrain aerodynamics and building aerodynamics. Individual session papers reflect on recent methodologies and innovations on CFD techniques applied to flow about bluff bodies immersed in shear layers, bridge aerodynamics, air pollution aerodynamics, mesoscale predictions of flow over complex terrain and the application of advanced numerical method strategies to these topics.
This monograph contains original results in the field of mathematical and numerical modeling of mechanical behavior of granular materials and materials with different strengths. It proposes new models helping to define zones of the strain localization. The book shows how to analyze processes of the propagation of elastic and elastic-plastic waves in loosened materials, and constructs models of mixed type, describing the flow of granular materials in the presence of quasi-static deformation zones. In a last part, the book studies a numerical realization of the models on multiprocessor computer systems. The book is intended for scientific researchers, lecturers of universities, post-graduates and senior students, who specialize in the field of the deformable materials mechanics, mathematical modeling and adjacent fields of applied and calculus mathematics.
During the last two decades the boundary element method has experienced a remarkable evolution. Contemporary concepts and techniques leading to the advancements of capabilities and understanding of the mathematical and computational aspects of the method in mechanics are presented. The special emphasis on theoretical and numerical issues, as well as new formulations and approaches for special and important fields of solid and fluid mechanics are considered. Several important and new mathematical aspects are presented: singularity and hypersingular formulations, regularity, errors and error estimators, adaptive methods, Galerkin formulations, coupling of BEM-FEM and non-deterministic (stochastic and fuzzy) BEM formulations. Novel developments and applications of the boundary element method in various fields of mechanics of solids and fluids are considered: heat conduction, diffusion and radiation, non-linear problems, dynamics and time-depending problems, fracture mechanics, thermoelasticity and poroelasticity, aerodynamics and acoustics, contact problems, biomechanics, optimization and sensitivity analysis problems, ill posed and inverse problems, and identification problems.
In the preliminary stage of designing new structural hardware that must perform a given mission in a fluctuating load environment, there are several factors the designers should consider. Trade studies for different design configurations should be performed and, based on strength and weight considerations, among others, an optimum configuration selected. The selected design must be able to withstand the environment in question without failure. Therefore, a comprehen sive structural analysis that consists of static, dynamic, fatigue, and fracture is necessary to ensure the integrity of the structure. During the past few decades, fracture mechanics has become a necessary discipline for the solution of many structural problems. These problems include the prevention of failures resulting from preexisting cracks in the parent material, welds or that develop under cyclic loading environment during the life of the structure. The importance of fatigue and fracture in nuclear, pressure vessel, aircraft, and aerospace structural hardware cannot be overemphasized where safety is of utmost concern. This book is written for the designer and strength analyst, as well as for the material and process engineer who is concerned with the integrity of the structural hardware under load-varying environments in which fatigue and frac ture must be given special attention. The book is a result of years of both acade mic and industrial experiences that the principal author and co-authors have accumulated through their work with aircraft and aerospace structures."
Numerical methods are playing an ever-increasing role in physics and engineering. This is especially true after the recent explosion of computing power on the desk-top. This book is aimed at helping the user to make intelligent use of this power tool. Each method is introduced through realistic examples and actual computer programs. The explanations provide the background for making a choice between similar approaches and the knowledge to explore the network for the appropriate existing codes. Tedious proofs and derivations, on the other hand, are delegated to references. Examples of uncoventional methods are also given to stimulate readers in exploring new ways of solving problems.
This thesis investigates the use of blade-pitch control and real-time wind measurements to reduce the structural loads on the rotors and blades of wind turbines. The first part of the thesis studies the main similarities between the various classes of current blade-pitch control strategies, which have to date remained overlooked by mainstream literature. It also investigates the feasibility of an estimator design that extracts the turbine tower motion signal from the blade load measurements. In turn, the second part of the thesis proposes a novel model predictive control layer in the control architecture that enables an existing controller to incorporate the upcoming wind information and constraint-handling features. This thesis provides essential clarifications of and systematic design guidelines for these topics, which can benefit the design of wind turbines and, it is hoped, inspire the development of more innovative mechanical load-reduction solutions in the field of wind energy.
This volume records the Symposium on 'Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics', held at the University of Nottingham from 30th August to 3rd September 1994, sponsored by the International Union of Theoretical and Applied Mechanics and held in conjunction with the In- ternational Society for the Interaction of Mechanics and Mathematics. The advent of composite materials, together with their widespread use in recent years, has provided a powerful stimulus for advances in several somewhat ne- glected areas of solid mechanics. Exploitation of fibre-reinforced solids and laminates has rekindled interest in the theory and application of anisotropic elasticity and motivated study of many aspects of material inhomogeneity. The need to understand fibre-matrix interactions, especially in modelling metal- matrix composites and the forming of thermoplastic components has fostered advances in plasticity and viscoelasticity theory, to describe phenomena such as deformation-induced inhomogeneity and anisotropy. Plasticity and flow of granular media are also intrinsically nonlinear, giving rise, for example, to highly anisotropic and strongly localized effects, such as shear bands. Most materials contain impurities. These inclusions, even if microscopically isotropic, cause macroscopic anisotropy in an 'effective-medium' theory. Dy- namic behaviour is even more complex, since wave propagation reveals both attenuation and dispersion effects. Increased interest in finer-scaled compos- ites (nanotechnology and superlattices) and ultra-high frequency techniques continue to reveal new effects, due to inhomogeneity and microstructure. An example included here is lattice-induced dispersion for certain surface waves of relatively long wavelength.
The IFAC Workshop on Intelligent Components for Autonomous and Semi-Autonomous Vehicles (ICASAV '95) was held in Toulouse, France, 25-26 October 1995 and provided academic and industrial researchers from all over the world with an opportunity to discuss their experiences and research results in this field. Areas covered included vehicle dynamics, navigation, localization estimation, driver assistance and energy management.
This book provides state of the art coverage of important current issues in the analysis, measurement, and monitoring of the dynamic response of infrastructure to environmental loads, including those induced by earthquake motion and differential soil settlement. The coverage is in five parts that address numerical methods in structural dynamics, soil-structure interaction analysis, instrumentation and structural health monitoring, hybrid experimental mechanics, and structural health monitoring for bridges. Examples that give an impression of the scope of the topics discussed include the seismic analysis of bridges, soft computing in earthquake engineering, use of hybrid methods for soil-structure interaction analysis, effects of local site conditions on the inelastic dynamic analysis of bridges, embedded models in wireless sensor networks for structural health monitoring, recent developments in seismic simulation methods, and seismic performance assessment and retrofit of structures. Throughout, the emphasis is on the most significant recent advances and new material. The book comprises extended versions of contributions delivered at the DE-GRIE Lab Workshop 2014, held in Thessaloniki, Greece, in November 2014.
This book addresses the characterization of flow and transport in porous fractured media from experimental and modeling perspectives. It provides a comprehensive presentation of investigations performed and analyzed on different scales. |
You may like...
CABology: Value of Cloud, Analytics and…
Nitin Upadhyay
Hardcover
Time Series Analysis and Forecasting…
Ignacio Rojas, Hector Pomares
Hardcover
Stochastic Processes - Estimation…
Kaddour Najim, Enso Ikonen, …
Hardcover
R4,310
Discovery Miles 43 100
Mathematics and Computing 2013…
Ram. N. Mohapatra, Debasis Giri, …
Hardcover
|