![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
Two key words for mechanical engineering in the future are Micro and Intelligence. It is weIl known that the leadership in the intelligence technology is a marter of vital importance for the future status of industrial society, and thus national research projects for intelligent materials, structures and machines have started not only in advanced countries, but also in developing countries. Materials and structures which have self-sensing, diagnosis and actuating systems, are called intelligent or smart, and are of growing research interest in the world. In this situation, the IUT AM symposium on Dynamics 0/ Advanced Materials and Smart Structures was a timely one. Smart materials and structures are those equipped with sensors and actuators to achieve their designed performance in achanging environment. They have complex structural properties and mechanical responses. Many engineering problems, such as interface and edge phenomena, mechanical and electro-magnetic interaction/coupling and sensing, actuating and control techniques, arise in the development ofintelligent structures. Due to the multi-disciplinary nature ofthese problems, all ofthe classical sciences and technologies, such as applied mathematics, material science, solid and fluid mechanics, control techniques and others must be assembled and used to solve them. IUTAM weIl understands the importance ofthis emerging technology. An IUTAM symposium on Smart Structures and Structronic Systems (Chaired by U.
The ninth International Cryogenic Materials Conference (ICMC) was held on the campus of the University of Alabama at Huntsville (UAH) in collaboration with the Cryogenic Engineering Conference (CEC) on June 11-14, 1991. The continuing bond between these two major conferences in the field of cryogenics is indicative of the extreme interdependence of their subject matter. The major purpose of the conference is sharing of the latest advances in low temperature materials science and technology. However, the many side benefits which accrue when this many experts gather, such as identification of new research areas, formation of new collaborations which often cross the boundaries of both scientific discipline and politics, and a chance for those new to the field to meet the old-timers, may override the stated purpose. This 1991 ICMC was chaired by F. R. Fickett of the National Institute of Standards and Technology. K. T. Hartwig, of Texas A&M served as Program Chairman with the assistance of eleven other Program Committee members. We especially appreciate the contributions of the CEC board and its Conference Chairman, J. Hendricks of Alabama Cryogenic Engineering, to the organization. of this joint conference. UAH hosted the conference. The local arrangements and management, under the watchful eye of Ann Yelle and Mary Beth Magathan of the UAH conference staff, were excellent. Participation in the CEC/ICMC continues to exceed expectations with 650 registrants for the combined conference.
The 1995 International Cryogenic Materials Conference (lCMC) was held at the Greater Columbus Convention Center in Columbus, Ohio, in conjunction with the Cryogenic Engineering Conference (CEC) on July 17-21. The interdependent subjects of the two conferences attracted more than eight hundred participants, who came to share the latest advances in low-temperature materials science and technology. They also came for the important by products of the conferences: identification of new research areas, of collaborative research possibilities, and the establishment and renewal of exploration professional relationships. Ted Collings (Ohio State University), as Chairmen of the 1995 ICMC; Ted Hartwig (Texas A&M University), as Program Chairman; and twenty-one other Program Committee members expertly arranged the ICMC technical sessions and related activities. The contributions of the CEC board and its Conference Chairman James B. Peeples of CVI, Inc., were central to the success of the eleventh CEC/ICMC. Jeff Bergen of Lake Shore Cryogenics served as Exhibits Chairman. Local arrangements and conference management were expertly handled under the guidance of Centennial Conferences, Inc. Skillful assistance with editing and preparation ofthese proceedings was provided by Ms. Vicky Bardos ofSynchrony, Inc.
This book presents the latest results related to shells characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.
In today's business environment, reliability and maintenance drastically affect the three key elements of competitiveness - quality, cost, and product lead time. Well-maintained machines hold tolerances better, help reduce scrap and rework, and raise consistency and quality of the part in addition to cutting total production costs. Today, many factories are still performing maintenance on equipment in a reactive manner due to a lack of understanding about machine performance behaviour. To improve production efficiency, computer-aided maintenance and diagnostic methodology must be applied effectively in manufacturing. This book focuses on the fundamental principles of predictive maintenance and diagnostic engineering. In addition to covering the relevant theory, techniques and methodologies in maintenance engineering, the book also provides numerous case studies and examples illustrating the successful application of the principles and techniques outlined.
This book focuses on the methods of dynamic analysis and synthesis of machines, comprising of cyclic action mechanisms, such as linkages, cams, steppers, etc. It presents the modern methods of oscillation analysis in machines, including cyclic action mechanisms (linkage, cam, stepper, etc.). Thus, it builds a bridge between the classic theory of oscillations and its practical application in the dynamic problems for cyclic machines. The author take into account that, in the process of training engineers for jobs in engineering industries, producing cyclic machines, insufficient attention is paid, until now, to the problems of dynamic and especially to oscillations.
The Boundary Element Method sets out a simple, efficient and cost effective computational technique which provides numerical solutions -- for objects of any shape -- for a wide range of scientific and engineering problems. The Boundary Element Method provides a complete approach to formulating boundary integral equations for scientific and engineering problems and solving them numerically using an element approximation. Only a knowledge of elementary calculus is required, since the text begins by relating familiar differential equations to integral equations and then moves on to the simple solution of integral equations. From this starting point, the mathematics of formulation and numerical approximation are developed progressively with every mathematical step being provided. Particular attention is paid to the problem of accurate evaluation of singular integrands and to the use of increasing levels of accuracy provided by constant, linear and quadratic approximations. This enables a full solution to be given for both two dimensional and three dimensional potential problems and finally, for the two dimensional elastostatics problem. The Boundary Element Method develops the mathematics of the text progressively both within chapters and from chapter to chapter. It is a self-contained, step by step, exposition of the boundary element method, leading to its application to the key problem of elastostatics. The Boundary Element Method may be used as a standard introductory reference text for the mathematics of this method and is ideal for final year undergraduate study as well as for postgraduates, scientists and engineers new to the subject. Worked examples and exercises are providedthroughout the text.
FolJowing the formulation of the laws of mechanics by Newton, Lagrange sought to clarify and emphasize their geometrical character. Poincare and Liapunov successfuIJy developed analytical mechanics further along these lines. In this approach, one represents the evolution of all possible states (positions and momenta) by the flow in phase space, or more efficiently, by mappings on manifolds with a symplectic geometry, and tries to understand qualitative features of this problem, rather than solving it explicitly. One important outcome of this line of inquiry is the discovery that vastly different physical systems can actually be abstracted to a few universal forms, like Mandelbrot's fractal and Smale's horse-shoe map, even though the underlying processes are not completely understood. This, of course, implies that much of the observed diversity is only apparent and arises from different ways of looking at the same system. Thus, modern nonlinear dynamics 1 is very much akin to classical thermodynamics in that the ideas and results appear to be applicable to vastly different physical systems. Chaos theory, which occupies a central place in modem nonlinear dynamics, refers to a deterministic development with chaotic outcome. Computers have contributed considerably to progress in chaos theory via impressive complex graphics. However, this approach lacks organization and therefore does not afford complete insight into the underlying complex dynamical behavior. This dynamical behavior mandates concepts and methods from such areas of mathematics and physics as nonlinear differential equations, bifurcation theory, Hamiltonian dynamics, number theory, topology, fractals, and others.
This book contains the edited version of the lectures presented at the NATO Advanced Study Institute on computer-aided analysis of rigid and flexible mechanical systems, held in Troacuteia, Portugal, from June 27-July 9, 1993. The topics presented include formulations and numerical aspects of rigid and flexible multibody dynamics, object-oriented paradigms, optimal design and synthesis, robotics, kinematics, path planning, control, impact dynamics and aspects of application. The book discusses these topics in a tutorial and review manner, providing a comprehensive summary of current work. It should, therefore, be suitable for a range of readers, from advanced students to researchers and implementers.
This text provides an introduction, at the level of an advanced student in engineering or physics, to the field of nanomechanics and nanomechanical devices. It provides a unified discussion of solid mechanics, transducer applications, and sources of noise and nonlinearity in such devices. Demonstrated applications of these devices, as well as an introduction to fabrication techniques, are also discussed. The text concludes with an overview of future technologies, including the potential use of carbon nanotubes and other molecular assemblies.
This is the second volume of a series of edited books whose aim is to collect c- tributed papers within a framework that can serve as a collection of persons in MMS (Mechanism and Machine Science). This is a continuation of the first volume that was published in 2008, again combining very ancient and very recent scholars in order to give not only an encyclopaedic character to this project but also to emphasize the significance of MMS over time. This project has the characteristic that the papers illustrate, by recognizing p- sons and their scientific work, mainly technical developments in the historical evolution of the fields that today are grouped in MMS. Thus, emphasis is also given to biographical notes describing efforts and experiences of people who have c- tributed to the technical achievements whose technical survey is the core of each contributed paper. This second volume of the project has been possible thanks to the invited authors who have enthusiastically shared in this initiative and who have spent time and effort in preparing the papers. The stand-alone papers cover the wide field of the History of Mechanical Engineering with specific focus on MMS. I believe that readers will take advantage of the papers in this book and future ones by supplying further satisfaction and motivation for her or his work (historical or not).
Proceedings of an International Symposium on Absorbed Specific Energy and Strain Energy Density Criterion, Budapest, September 1980. In memory of the late Professor Laszlo Gillemot"
A general approach to the derivation of equations of motion of as holonomic, as nonholonomic systems with the constraints of any order is suggested. The system of equations of motion in the generalized coordinates is regarded as a one vector relation, represented in a space tangential to a manifold of all possible positions of system at given instant. The tangential space is partitioned by the equations of constraints into two orthogonal subspaces. In one of them for the constraints up to the second order, the motion low is given by the equations of constraints and in the other one for ideal constraints, it is described by the vector equation without reactions of connections. In the whole space the motion low involves Lagrangian multipliers. It is shown that for the holonomic and nonholonomic constraints up to the second order, these multipliers can be found as the function of time, positions of system, and its velocities. The application of Lagrangian multipliers for holonomic systems permits us to construct a new method for determining the eigenfrequencies and eigenforms of oscillations of elastic systems and also to suggest a special form of equations for describing the system of motion of rigid bodies. The nonholonomic constraints, the order of which is greater than two, are regarded as programming constraints such that their validity is provided due to the existence of generalized control forces, which are determined as the functions of time. The closed system of differential equations, which makes it possible to find as these control forces, as the generalized Lagrange coordinates, is compound. The theory suggested is illustrated by the examples of a spacecraft motion. The book is primarily addressed to specialists in analytic mechanics.
Computational kinematics is an enthralling area of science with a rich spectrum of problems at the junction of mechanics, robotics, computer science, mathematics, and computer graphics. The present book collects up-to-date methods as presented during the Fifth International Workshop on Computational Kinematics (CK2009) held at the University of Duisburg-Essen, Germany. The covered topics include design and optimization of cable-driven robots, analysis of parallel manipulators, motion planning, numerical methods for mechanism calibration and optimization, geometric approaches to mechanism analysis and design, synthesis of mechanisms, kinematical issues in biomechanics, balancing and construction of novel mechanical devices, detection and treatment of singularities, as well as computational methods for gear design. The results should be of interest for practicing and research engineers as well as Ph.D. students from the fields of mechanical and electrical engineering, computer science, and computer graphics.
Pneumatic power is ideal for the ever increasing range of 'light' applications in which a cheap, clean, adaptable source of power is needed. Used in conjunction with microprocessor control it forms the basis of manufacturing automation from basic conveying and handling lines to complex robotic assembly systems. Training courses and books aimed at the technician have not kept pace with these developments. This book is written to cover the British Fluid Power Association Pneumatics Certificate, which is also awarded as part of CGLI scheme 2340, and is in the process of NVQ accreditation at level 3. 'Practical Pneumatics' provides a clear and detailed discussion of pneumatic technology by tackling the principles of pneumatic components and the behaviour of air under compression, during treatment and in applications to production processes. The non-mathematical approach, the numerous detailed diagrams and the many exercises and examples explain concepts clearly and concisely and provide students with a foundation from which to develop practical competence.
The First International Symposium on the Education in Mechanism
and Machine Science (ISEMMS 2013) aimed to create a stable platform
for the interchange of experience among researches of mechanism and
machine science.
Computational Methods for Microstructure-Property Relationships introduces state-of-the-art advances in computational modeling approaches for materials structure-property relations. Written with an approach that recognizes the necessity of the engineering computational mechanics framework, this volume provides balanced treatment of heterogeneous materials structures within the microstructural and component scales. Encompassing both computational mechanics and computational materials science disciplines, this volume offers an analysis of the current techniques and selected topics important to industry researchers, such as deformation, creep and fatigue of primarily metallic materials. Researchers, engineers and professionals involved with predicting performance and failure of materials will find Computational Methods for Microstructure-Property Relationships a valuable reference.
The Microsystems Series has as its goal the creation of an outstanding set of textbooks, references, and monographs on subjects that span the broad field of microsystems. Exceptional PhD dissertations provide a good starting point for such a series, because, unlike monographs by more senior authors, which must compete with other professional duties for attention, the dissertation becomes the sole focus of the author until it is completed. Conversion to book form is then a streamlined process, with final editing and book production completed within a few months. Thus we are able to bring important and timely material into book form at a pace which tracks this rapidly developing field. Our first four books in the series were drawn from the more physics-oriented side of the microsystems field, including such diverse subjects as computer-aided design, atomic-force microscopy, and ultrasonic motion detection. Now, with Sangeeta Bhatia's work, we enter the realm of biology. Her use of artifically structured substrates to encourage the liver cells to form orderly assemblies is a fine example of how microfabrication technology can contribute to cell biology and medicine. I am pleased to be able to add this very new and very interesting work to the Microsystems Series. Stephen D. Senturia Cambridge MA Microfabrication in Tissue Engineering and Bioartificial Organs Foreword One of the emerging applications of microsystems technology in biology and medicine is in the field of tissue engineering and artificial organs. In order to function, cells need to receive proper signals from their environment.
An Introduction to Numerical Methods: A MATLABŪ Approach, Fifth Edition continues to offer readers an accessible and practical introduction to numerical analysis. It presents a wide range of useful and important algorithms for scientific and engineering applications, using MATLAB to illustrate each numerical method with full details of the computed results so that the main steps are easily visualized and interpreted. This edition also includes new chapters on Approximation of Continuous Functions and Dealing with Large Sets of Data.
Mechanical Design: Theory and Applications, Third Edition introduces the design and selection of common mechanical engineering components and machine elements, hence providing the foundational "building blocks" engineers needs to practice their art. In this book, readers will learn how to develop detailed mechanical design skills in the areas of bearings, shafts, gears, seals, belt and chain drives, clutches and brakes, and springs and fasteners. Where standard components are available from manufacturers, the steps necessary for their specification and selection are thoroughly developed. Descriptive and illustrative information is used to introduce principles, individual components, and the detailed methods and calculations that are necessary to specify and design or select a component. As well as thorough descriptions of methodologies, this book also provides a wealth of valuable reference information on codes and regulations.
|
![]() ![]() You may like...
Smart Electromechanical Systems - Group…
Andrey E. Gorodetskiy, Irina L. Tarasova
Hardcover
R2,919
Discovery Miles 29 190
The Book of the Boudoir; 2
Lady (Sydney) 1783-1859 Morgan, Sallie Bingham Center for Women's His
Hardcover
R940
Discovery Miles 9 400
Extensions of Dynamic Programming for…
Hassan AbouEisha, Talha Amin, …
Hardcover
R2,904
Discovery Miles 29 040
|