Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
This book provides a well-focused and comprehensive overview of novel technologies involved in advanced microfluidics based diagnosis via various types of prognostic and diagnostic biomarkers. This authors examine microfluidics based diagnosis in the biomedical field as an upcoming field with extensive applications. It provides a unique approach and comprehensive technology overview for diagnosis management towards early stages of various bioanalytes via cancer diagnostics diabetes, alzheimer disease, toxicity in food products, brain and retinal diseases, cardiovascular diseases, and bacterial infections etc. Thus, this book would encompass a combinatorial approach of medical science, engineering and biomedical technology. The authors provide a well-focused and comprehensive overview of novel technologies involved in advanced microfluidics based diagnosis via various types of prognostic and diagnostic biomarkers. Moreover, this book contains detailed description on the diagnosis of novel techniques. This book would serve as a guide for students, scientists, researchers, and microfluidics based point of care technologies via smart diagnostics and to plan future research in this valuable field.
The 33 papers presented in this book were selected from amongst the 97 papers presented during the 6th edition of the International Conference on Integrated Design and Manufacturing in Mechanical Engineering during 28 sessions. This conference was organized within the framework of the activities of the AIP-PRIMECA network whose main scientific field is integrated design applied to both mechanical engineering and production, and represents state-of-the-art research. It shows the urgent need for change in product development with the integration during the design activity of the global life cycle of the product. Two keynote papers introduce the subject of the Conference and are followed by the different themes highlighted during the conference: The design/manufacturing interface; Integrated design of manufacturing processes; Life cycle design and manufacturing approaches; Agility in design and manufacture; Knowledge in engineering; and Management in production systems.
This volume contains the invited contributions to the Spring 2012 seminar series at Virginia State University on Mathematical Sciences and Applications. It is a thematic continuation of work presented in Volume 24 of the Springer Proceedings in Mathematics & Statistics series. Contributors present their own work as leading researchers to advance their specific fields and induce a genuine interdisciplinary interaction. Thus all articles therein are selective, self-contained, and are pedagogically exposed to foster student interest in science, technology, engineering and mathematics, stimulate graduate and undergraduate research, as well as collaboration between researchers from different areas. The volume features new advances in mathematical research and its applications: anti-periodicity; almost stochastic difference equations; absolute and conditional stability in delayed equations; gamma-convergence and applications to block copolymer morphology; the dynamics of collision and near-collision in celestial mechanics; almost and pseudo-almost limit cycles; rainbows in spheres and connections to ray, wave and potential scattering theory; null-controllability of the heat equation with constraints; optimal control for systems subjected to null-controllability; the Galerkin method for heat transfer in closed channels; wavelet transforms for real-time noise cancellation; signal, image processing and machine learning in medicine and biology; methodology for research on durability, reliability, damage tolerance of aerospace materials and structures at NASA Langley Research Center. The volume is suitable and valuable for mathematicians, scientists and research students in a variety of interdisciplinary fields, namely physical and life sciences, engineering and technology including structures and materials sciences, computer science for signal, image processing and machine learning in medicine.
Intelligent technical systems, which combine mechanical, electrical and software engineering with methods from control engineering and advanced mathematics, go far beyond the state of the art in mechatronics and open up fascinating perspectives. Among these systems are so-called self-optimizing systems, which are able to adapt their behavior autonomously and flexibly to changing operating conditions. The Collaborative Research Center 614 "Self-optimizing concepts and structures in mechanical engineering" pursued the long-term aim to enable others to develop dependable self-optimizing systems. Assuring their dependability poses new challenges. However, self-optimization also offers the possibility to adapt the system's behavior to improve dependability during operation. The aim of this book is to provide methods and techniques to master the challenges and to exploit the possibilities given by self-optimization. The reader will be able to develop self-optimizing systems that fulfill and surpass today s dependability requirements easily. This book is directed to researchers and practitioners alike. It gives a brief introduction to the holistic development approach for self-optimizing mechatronic systems and the steps required to assure a dependable product design starting with the very early conceptual design phase. A guideline to select suitable methods for each step and the methods themselves are included. Each method is individually introduced, many examples and full references are given. "
The intention of this booklet is a brief but general introduction into the treatment of the Finite Element Method (FEM). The FEM has become the leading method in computer-oriented mechanics, so that many scienti?c brancheshavegrownup besides overthelastdecades. Nevertheless,theFEM today is a question of economy. On the one hand its industrial application is forced to reduce product development costs and time, on the other hand a large number of commercial FEM codes and a still growing number of software for e?ective pre- and postprocessors are available in the meantime. Due to that, today it is a quite challenging task to operate with all these di?erent tools at the same time and to understand all handling and so- tion techniques developed over the last years. So, we want to help in getting a deeper insight into the main "interfaces" between the "customers of the FEM" and the codes itself by providing a totally open structured FE-code based on Matlab, which is a very powerful tool in operating with matrix based formulations. That idea and conditions forced us some years ago to initiateDAEdalon as a tool for general FE developments in research appli- tions. In spite of still existing high sophisticated - mostly commercial - FE codes, the success and the acceptance of such a structured tool justify that decision afterwards more and more.
Over a period of several years the field of probabilistic mechanics and com putational mechanics have progressed vigorously, but independently. With the advent of powerful computational hardware and the development of novel mechanical techniques, the field of stochastic mechanics has progressed in such a manner that the inherent uncertainty of quite complicated systems can be addressed. The first International Conference on Computational Stochastic Mechanics was convened in Corfu in September 1991 in an ef fort to provide a forum for the exchanging of ideas on the current status of computational methods as applied to stochastic mechanics and for identi fying needs for further research. The Conference covered both theoretical techniques and practical applications. The Conference also celebrated the 60th anniversary of the birthday of Dr. Masanobu Shinozuka, the Sollenberger Professor of Civil Engineering at Princeton University, whose work has contributed in such a great measure to the development of Computational Stochastic Mechanics. A brief sum mary of his career and achievements are given in the Dedication. This book comprises some of the papers presented at the meeting and cov ers sections on Theoretical Reliability Analysis; Damage Analysis; Applied Reliability Analysis; Theoretical Random Vibrations; Stochastic Finite Ele ment Concept; Fatigue and Fracture; Monte Carlo Simulations; Earthquake Engineering Applications; Materials; Applied Random Vibrations; Applied Stochastic Finite Element Analysis, and Flow Related Applications and Chaotic Dynamics. The Editors hope that the book will be a valuable contribution to the grow ing literature covering the field of Computational Stochastic Mechanics.
This book focuses on the way in which the problem of the motion of bodies has been viewed and approached over the course of human history. It is not another traditional history of mechanics but rather aims to enable the reader to fully understand the deeper ideas that inspired men, first in attempting to understand the mechanisms of motion and then in formulating theories with predictive as well as explanatory value. Given this objective, certain parts of the history of mechanics are neglected, such as fluid mechanics, statics and astronomy after Newton. On the other hand, due attention is paid, for example, to the history of thermodynamics, which has its own particular point of view on motion. Inspired in part by historical epistemology, the book examines the various views and theories of a given historical period (synchronic analysis) and then makes comparisons between different periods (diachronic analysis). In each period, one or two of the most meaningful contributions are selected for particular attention, instead of presenting a long inventory of scientific achievements.
The book provides a self-contained treatment of stochastic finite element methods. It helps the reader to establish a solid background on stochastic and reliability analysis of structural systems and enables practicing engineers to better manage the concepts of analysis and design in the presence of uncertainty. The book covers the basic topics of computational stochastic mechanics focusing on the stochastic analysis of structural systems in the framework of the finite element method. The target audience primarily comprises students in a postgraduate program specializing in structural engineering but the book may also be beneficial to practicing engineers and research experts alike.
Understanding and predicting the performance of electromechanical systems is crucially important in the design of many modern products, and today s engineers and researchers are constantly seeking methods for optimizing these complex systems. This important text/reference highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation. As multiphysics simulation is a broad and rapidly growing field, requiring an array of technical skills in different intersecting disciplines, this book presents a specific focus on electromechanical systems as the target application. Topics and features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today s engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, magnetic components, RF components, actuators, and motors; reviews the governing equations for the simulation of related multiphysics problems; outlines relevant (topology and parametric size) optimization methods for electromechanical systems; describes in detail several multiphysics simulation and optimization example studies in both two and three dimensions, with sample numerical code. Researchers and engineers in industry and academia will find this work to be an invaluable reference on advanced electromechanical system design. The book is also suitable for students at undergraduate and graduate level, and many of the design examples will be of interest to anyone curious about the unique design solutions that arise from the coupling of optimization methods with multiphysics simulation techniques."
This book considers the modelling and analysis of the many types of ropes, linear fibre assemblies. The construction of these structures is very diverse and in the work these are considered from the modelling point of view. As well as the conventional twisted structures, braid and plaited structures and parallel assemblies are modelled and analysed, first for their assembly and secondly for their mechanical behaviour. Also since the components are assemblies of components, fibres into yarns, into strands, and into ropes the hierarchical nature of the construction is considered. The focus of the modelling is essentially toward load extension behaviour but there is reference to bending of ropes, encompassed by the two extremes, no slip between the components and zero friction resistance to component slip. Friction in ropes is considered both between the rope components, sliding, sawing and scissoring, and within the components, dilation and distortion, these latter modes being used to model component set, the phenomenon instrumental in rope proofing. The exploitation of the modelling is closed by the suggested modelling and analysis of component wear and life limitation and also of rope steady state heating. These will require extensive experimentation to extract the necessary coefficients, achievable by parallel testing of prototypes and similar structures. This development is focused on the modelling and analysis of ropes and other similar structures. All the modelling is based on the Principle of Virtual Work and admissible modes of deformation. Finally this book is directed towards the various industries involved in design, manufacture and use of ropes, stays and other similar structures.
For the last couple of decades it has been recognized that the foundation material on which a structure is constructed may interact dynamically with the structure during its response to dynamic excitation to the extent that the stresses and deflections in the system are modified from the values that would have been developed if it had been on a rigid foundations. This phenomenon is examined in detail in this book. The basic solutions are examined in time and frequency domains and finite element and boundary element solutions compared. Experimental investigations aimed at correlation and verification with theory are described in detail. A wide variety of SSI problems may be formulated and solved approximately-using simplified models in lieu of rigorous procedures; the book gives a good overview of these methods. A feature often lacking in other texts on the subject, is the way in which dynamic behaviour of soil can be modelled. Two contributors have addressed this problem from the computational and physical characterization viewpoints. The book illustrates practical areas with the analysis of tunnel linings and stiffness and damping of pile groups. Finally, design code provisions and derivation of design input motions complete this thorough overview of SSI in conventional engineering practice. Taken in its entirety the book, written by 15 well known experts, gives an in-depth review of soil-structure interaction across a broad spectrum of aspects usually not covered in a single volume. It should be a readily usable reference for the research worker as well as the advance level practitioner.
McCoy's guide to the maintenance and management of cooling water systems and the bacteria that live in them. Includes studies and testing of microbicides and other microorganisms that infest re-circulating cooling water systems and factors influencing their health and growth. Tests biological oxidation processes as a way of reusing treated effluents as an important method of water conservation in the petroleum refining and chemical processing industries. Explores practical methods for controlling microorganisms in cooling water; including working with chlorine dioxide as a microbicide. Methods are given for identifying and evaluating toxicants and bacteria that lead to fouling and staining of cooling water systems.
The years 2006 and 2007 mark a dramatic change of peoples view regarding c- mate change and energy consumption. The new IPCC report makes clear that - mankind plays a dominant role on climate change due to CO emissions from en- 2 ergy consumption, and that a significant reduction in CO emissions is necessary 2 within decades. At the same time, the supply of fossil energy sources like coal, oil, and natural gas becomes less reliable. In spring 2008, the oil price rose beyond 100 $/barrel for the first time in history. It is commonly accepted today that we have to reduce the use of fossil fuels to cut down the dependency on the supply countries and to reduce CO emissions. The use of renewable energy sources and 2 increased energy efficiency are the main strategies to achieve this goal. In both strategies, heat and cold storage will play an important role. People use energy in different forms, as heat, as mechanical energy, and as light. With the discovery of fire, humankind was the first time able to supply heat and light when needed. About 2000 years ago, the Romans started to use ceramic tiles to store heat in under floor heating systems. Even when the fire was out, the room stayed warm. Since ancient times, people also know how to cool food with ice as cold storage.
This volume features the contributions to the 15th Symposium of the STAB (German Aerospace Aerodynamics Association). Papers provide a broad overview of ongoing work in Germany, including high aspect ratio wings, low aspect ratio wings, bluff bodies, laminar flow control and transition, active flow control, hypersonic flows, aeroelasticity, aeroacoustics, mathematical fundamentals, numerical simulations, physical fundamentals, and facilities.
Future energy technologies must embrace and achieve sustainability by displacing fossil carbon-intensive energy consumption or capture/reuse/sequester fossil carbon. This book provides a deeper knowledge on individual low (and zero) carbon technologies in a comprehensive way, covering details of recent developments on these technologies in different countries. It also covers materials and processes involved in energy generation, transmission, distribution, storage, policies, and so forth, including solar electrical; thermal systems; energy from biomass and biofuels; energy transmission, distribution, and storage; and buildings using energy-efficient lighting.
Hard machining is a recent technology that can be defined as a direct machining operation of workpieces that have hardness values typically in the 45-70HRc range using tools with geometrically-defined cutting edges. This operation always presents the challenge of selecting a cutting tool insert that facilitates an extended tool life and high-precision machining of the component. Hard machining presents several advantages when compared with the traditional methodology based on finish grinding operations after heat treatment of workpieces. This technology also offers a great contribution to sustainable manufacturing. Hard materials comprise hardened steels, high-speed steels, heat-treatable steels, tool steels, bearing steels and chilled/white cast irons. Inconnel, Hastelloy, cobalt alloys for biomedical applications and other special materials are also classified as hard materials. These materials are in constant use by the automotive industry for bearing production and for the machining of dies and moulds as well as other components for advanced industries. Machining of Hard Materials aims to provide the fundamentals and recent advances in the study of hard machining of materials. All chapters are written by international experts in this important field of research. Chapter 1 defines machining of hard materials and its application in industry. Chapter 2 is dedicated to advanced cutting tools used for the machining of hard materials. Chapter 3 describes the mechanics of the cutting and chip formation. Chapter 4 contains information on surface integrity. Chapter 5 is dedicated to finite element modelling and simulation. Finally, Chapter 6 is dedicated to computational methods and optimization. Machining of Hard Materials can serve as a useful reference for academics; manufacturing and materials researchers; manufacturing and mechanical engineers; and professionals in machining and related industries.
The German Research Council (DFG) decided 1987 to establish a nationwide five year research project devoted to dynamics of multibody systems. In this project universities and research centers cooperated with the goal to develop a general pur pose multibody system software package. This concept provides the opportunity to use a modular structure of the software, i.e. different multibody formalisms may be combined with different simulation programmes via standardized interfaces. For the DFG project the database RSYST was chosen using standard FORTRAN 77 and an object oriented multibody system datamodel was defined. The project included * research on the fundamentals of the method of multibody systems, * concepts for new formalisms of dynamical analysis, * development of efficient numerical algorithms and * realization of a powerful software package of multibody systems. These goals required an interdisciplinary cooperation between mathematics, compu ter science, mechanics, and control theory. ix X After a rigorous reviewing process the following research institutions participated in the project (under the responsibility of leading scientists): Technical University of Aachen (Prof. G. Sedlacek) Technical University of Darmstadt (Prof. P. Hagedorn) University of Duisburg M. Hiller) (Prof.
This book is concerned with electromechanical systems, particularly the interaction between and the control of the electrical (electronic) and mechanical components. As electronics is becoming increasingly important in controlling machines, the problems of mechanical engineering can be less and less separated from those of electronic engineering and control engineering. This graduate-level text fills a gap in the literature by considering these problems from a unified perspective; it requires only a background in undergraduate mechanical engineering as a prerequisite. The first part of the book deals with electromechanical sensors and actuators, beginning with a review of mechanics and electrodynamics. These fundamentals are then applied to simple devices such as stepper motors, DC motors, and piezoelectric devices. Part two focuses on issues involving control, and begins with a review of classical control theory. Subsequent chapters discuss computer-controlled electromechanical systems, residual vibration, and active damping.
Advances in technology are demanding ever-increasing mastery over the materials being used: the challenge is to gain a better understanding of their behaviour, and more particularly of the relations between their microstructure and their macroscopic properties. This work, of which this is the first volume, aims to provide the means by which this challenge may be met. Starting from the mechanics of deformation, it develops the laws governing macroscopic behaviour expressed as the constitutive equations always taking account of the physical phenomena which underlie rheological behaviour. The most recent developments are presented, in particular those concerning heterogeneous materials such as metallic alloys, polymers and composites. Each chapter is devoted to one of the major classes of material behaviour. As the subtitles indicate, Volume 1 deals with micro- and macroscopic constitutive behaviour and Volume 2 with damage and fracture mechanics. A third volume will be devoted to exercises and their full solutions complementing the content of these two first volumes. Most of the chapters end with a set of exercises, to many of which either the full solution or hints on how to obtain this are given; each volume is profusely illustrated with explanatory diagrams and with electron-microscope photographs. This book, now in its second edition, has been rigorously re-written, updated and modernised for a new generation. The authors improved the existing material, in particular in modifying the organisation, and added new up-to-date content. Understanding the subject matter requires a good knowledge of solid mechanics and materials science; the main elements of these fields are given in a set of annexes at the end of the first volume. The authors also thought it interesting for the readers to give as footnotes some information about the many scientists whose names are attached to theories and formulae and whose memories must be celebrated. Whilst the present book, as well as Volume 2, is addressed primarily to graduate students, part of it can be used in undergraduate courses; and it is hoped that practising engineers and scientists will find the information it conveys useful. It is the authors hope also that English-speaking readers will want to learn about the aspects of French culture, and more particularly of the French school of micromechanics of materials, which this treatment undoubtedly displays. "
Developed from the author's course on advanced mechanics of composite materials, Finite Element Analysis of Composite Materials with Abaqus (R) shows how powerful finite element tools tackle practical problems in the structural analysis of composites. This Second Edition includes two new chapters on "Fatigue" and "Abaqus Programmable Features" as well as a major update of chapter 10 "Delaminations" and significant updates throughout the remaining chapters. Furthermore, it updates all examples, sample code, and problems to Abaqus 2020. Unlike other texts, this one takes theory to a hands-on level by actually solving problems. It explains the concepts involved in the detailed analysis of composites, the mechanics needed to translate those concepts into a mathematical representation of the physical reality, and the solution of the resulting boundary value problems using Abaqus. The reader can follow a process to recreate every example using Abaqus graphical user interface (CAE) by following step-by-step directions in the form of pseudo-code or watching the solutions on YouTube. The first seven chapters provide material ideal for a one-semester course. Along with offering an introduction to finite element analysis for readers without prior knowledge of the finite element method (FEM), these chapters cover the elasticity and strength of laminates, buckling analysis, free edge stresses, computational micromechanics, and viscoelastic models for composites. Emphasizing hereditary phenomena, the book goes on to discuss continuum and discrete damage mechanics as well as delaminations and fatigue. The text also shows readers how to extend the capabilities of Abaqus via "user subroutines" and Python scripting. Aimed at advanced students and professional engineers, this textbook features 62 fully developed examples interspersed with the theory, 82 end-of-chapter exercises, and 50+ separate pieces of Abaqus pseudo-code that illustrate the solution of example problems. The author's website offers the relevant Abaqus and MATLAB model files available for download, enabling readers to easily reproduce the examples and complete the exercises. Video recording of solutions to examples are available on YouTube with multilingual captions.
This book includes a numerical investigation of shear localization in granular materials within micro-polar hypoplasticity, which was carried out during my long research stay at the Institute of Soil and Rock Mechanics at Karlsruhe University from 1985 to 1996. I dedicate my book to Prof. Gerd Gudehus from Germany, the former head of the Institute of Rock and Soil Mechanics at Karlsruhe University and the supervisor of my scientific research during my stay in Karlsruhe, who encouraged me to deal with shear localization in granular bodies within micro-polar hypoplasticity. I greatly - preciate his profound knowledge, kind help constructive discussions, and collegial attitude to his co-workers. I am thankful to the both series editors: Prof. Wei Wu from Universitat fur Bodenkultur in Austria and Prof. Ronaldo Borja from Stanford University in USA for their helpful suggestions with respect to the contents and structure of the book. I am also grateful to Dr. Thomas Ditzinger and Mrs. Heather King from the Springer Publishing Company and SPS data processing team for their help in editing this book. Gdansk, Jacek Tejchman June 2008 Contents 1 Introduction......................................................................... 1 2 Literature Overview on Experiments........................................... 11 3 Theoretical Model.................................................................. 47 3.1 Hypoplastic Constitutive Model............................................. 47 3.2 Calibration of Hypoplastic Material Parameters........................... 60 3.3 Micro-polar Continuum........................................................ 67 3.4 Micro-polar Hypoplastic Constitutive Model.............................. 72 3.5 Finite Element Implementation................................................ 75 4 Finite Element Calculations: Preliminary Results............................
|
You may like...
|