![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book will be of interest to those working in the field of non-smooth mechanics and dynamics.
Upspeeding technological evolution and globalisation characterise today's and future lives of engineers. It is vital for all institutions involved in engineering education to keep pace and to anticipate future needs. The herein presented collection of papers results from the Workshop on Global Engineering Education (GEE'3) which took place at Aachen University of Technology, 18 - 20 October 2000. In this meeting more than 150 specialists from 25 countries discussed the topic "Educating the Engineer for the Century." Which role to attribute to non-technical qualifications? How to integrate ethical aspects in education? Do we have to define international standards in education? What about quality control? What is the potential of new media for knowledge transfer? How to organise lifelong learning for engineers? - These are some of the questions discussed among representatives of industries, educational institutions, politicians and individuals during this meeting. According to the sessions of the workshop, the book is subdivided into chapters covering the areas "Role of the Global Engineer in Meeting the Challenges of Society in the Century," "Internationality and Interdisciplinarity," "Engineering Education in Emerging Economies," "European Bachelor and Master Programmes," "Developing Personal Skills to be a Global Engineer." Three chapters deal with successful practice in engineering education covering the topics "Programmes, Curricula and Evaluation," "Educational Concepts," and "University-Industry Partnership, Design Projects."
Stability and Controls Analysis for Delay Systems is devoted to stability, controllability and iterative learning control (ILC) to delay systems, including first order system, oscillating systems, impulsive systems, fractional systems, difference systems and stochastic systems raised from physics, biology, population dynamics, ecology and economics, currently not presented in other books on conventional fields. Delayed exponential matrix function approach is widely used to derive the representation and stability of the solutions and the controllability. ILC design are also established, which can be regarded as a way to find the control function. The broad variety of achieved results with rigorous proofs and many numerical examples make this book unique.
Extensively revised and thoroughly updated, this popular text de-emphasizes high level mathematics in favor of effective, accurate modeling. Real-world examples amplify the theory and show how to use derived equations to model physical problems. Exercises that parallel the examples build readers' confidence and prepare them to confront the more complex situations they encounter as professionals.
The essential aim of the present book is to consider a wide set of problems arising in the mathematical modelling of mechanical systems under unilateral constraints. In these investigations elastic and non-elastic deformations, friction and adhesion phenomena are taken into account. All the necessary mathematical tools are given: local boundary value problem formulations, construction of variational equations and inequalities, and the transition to minimization problems, existence and uniqueness theorems, and variational transformations (Friedrichs and Young-Fenchel-Moreau) to dual and saddle-point search problems. Important new results concern contact problems with friction. The Coulomb friction law and some others are considered, in which relative sliding velocities appear.
This eagerly awaited second edition of Heinz Heisler's Advanced
Vehicle Technology is a comprehensive and thorough description of
vehice bodies and components.
The significant advances witnessed over the last years in the broad field of linguistic variation testify to a growing convergence between sociolinguistic approaches and the somewhat older historical and comparative research traditions. Particularly within cognitive and functional linguistics, the evolution towards a maximally dynamic approach to language goes hand in hand with a renewed interest in corpus research and quantitative methods of analysis. Many researchers feel that only in this way one can do justice to the complex interaction of forces and factors involved in linguistic variability, both synchronically and diachronically. The contributions to the present volume illustrate the ongoing evolution of the field. By bringing together a series of analyses that rely on extensive corpuses to shed light on sociolinguistic, historical, and comparative forms of variation, the volume highlights the interaction between these subfields. Most of the contributions go back to talks presented at the meeting of the Societas Linguistica Europaea held in Leuven in 2001. The volume starts with a global typological view on the sociolinguistic landscape of Europe offered by Peter Auer. It is followed by a methodological proposal for measuring phonetic similarity between dialects designed by Paul Heggarty, April McMahon, and Robert McMahon. Various papers deal with specific phenomena of socially and conceptually driven variation within a single language. For Dutch, Jose Tummers, Dirk Speelman, and Dirk Geeraerts analyze inflectional variation in Belgian and Netherlandic Dutch, Reinhild Vandekerckhove focuses on interdialectal convergence between West-Flemish urban dialects, and Arjan van Leuvensteijn studies competing forms of address in the 17th century Dutch standard variety. The cultural and conceptual dimension is also present in the diachronic lexicosemantic explorations presented by Heli Tissari, Clara Molina, and Caroline Gevaert for English expressions referring to the experiential domains of love, sorrow and anger, respectively: the history of words is systematically linked up with the images they convey and the evolving conceptualizations they reveal. The papers by Heide Wegener and by Marcin Kilarski and Grzegorz Krynicki constitute a plea against arbitrariness of alternations at the level of nominal morphology: dealing with marked plural forms in German, and with gender assignment to English loanwords in the Scandinavian languages, respectively, their distributional accounts bring into the picture a variety of motivating factors. The four cross-linguistic studies that close the volume focus on the differing ways in which even closely related languages exploit parallel morphosyntactic patterns. They share the same methodological concern for combining rigorous parametrization and quantification with conceptual and discourse-functional explanations. While Griet Beheydt and Katleen Van den Steen confront the use of formally defined competing constructions in two Germanic and two Romance languages, respectively, Torsten Leuschner as well as Gisela Harras and Kirsten Proost analyze how a particular speaker's attitude is expressed differently in various Germanic languages.
The unique focus of the book is the close symbiotic relationship between design and manufacture. It covers a large number of actual issues in the field by authors from the main research groups involved in developing methods, models and tools for the improvement of design and manufacturing processes in companies. It presents a selection of thirty-three papers ensuing from the fifth International Conference on Integrated Design and Manufacturing in Mechanical Engineering, held at the University of Bath, UK, in April 2004. The contributions are divided in the following sections: two keynotes presenting the general synergies and relationships between the design and manufacturing processes through the concepts of production knowledge and integration; design strategies and methodologies, dealing with the critical element of knowledge in design and manufacturing processes and the methods with which designing can be undertaken collaboratively in an integrated manner; integrated design of manufacturing processes, which aim is to ensure a high quality product meeting all requirements, rapidly and at optimum cost; and design tools for particular applications in which texts optimising local decision have been grouped. The book is of interest to academics, students and practitioners specialising in design and manufacturing issues in mechanical engineering, who will find it of the greatest interest to compare various points of view within the fields broached throughout the Conference. This volume is recommended as a reference textbook for all researchers in this field. It will give teachning staff confronted with training methodologies in integrated design and production a toolto assess the scope of the development prospects in an extremely wide ranging field.
The articles in this book present advanced soft methods related to genetic and evolutionary algorithms, immune systems, formulation of deterministic neural networks and Bayesian NN. Many attention is paid to hybrid systems for inverse analysis fusing soft methods and the finite element method. Numerical efficiency of these soft methods is illustrated on the analysis and design of complex engineering structures.
The Fifth International Symposium on Distributed Autonomous Robotic Systems (DARS 2000) dealt with new strategies to realize complex, modular, robust, and fault-tolerant robotic systems. Technologies, algorithms, and system architectures for distributed autonomous robotic systems were presented and discussed during the meeting. DARS 2000 was truly an international event, with participants represent ing eleven countries from Europe, Asia, and the Americas. All of the papers in this volume were presented at DARS 2000, and were selected on the basis of peer re views to ensure quality and relevance. These papers have the common goal of con tributing solutions to realize robust and intelligent multirobot systems. The topics of the symposium address a wide range of issues that are important in the development of decentralized robotic systems. These topics include architec tures, communication, biological inspirations, reconfigurable robots, localization, exploration and mapping, distributed sensing, multi robot motion coordination, tar get assignment and tracking, multirobot learning, and cooperative object transport. DARS clearly requires a broad area of interdisciplinary technologies related not only to robotics and computer engineering, but also to biology and psychology. The DARS symposium is the leading established conference on distributed au tonomous systems. The First, Second, and Third International Symposia on Distrib uted Autonomous Robotic Systems (DARS '92, DARS '94, and DARS '96) were held at the Institute of Physical and Chemical Research (RIKEN), Saitama, Japan."
Compliant mechanisms and actuators are growing in importance due to their benefits in robotics, medical technology, sensor applications, or in handling compressible objects. This book helps to understand the mechanical behavior of compliant systems. Suggested classifications and different modeling methods are shown that allow for the description of compliant systems.
It is our pleasure to present these proceedings for "The Aerodynamics of Heavy Vehicles II: Trucks, Buses and Trains" International Conference held in Lake - hoe, California, August 26-31, 2007 by Engineering Conferences International (ECI). Brought together were the world's leading scientists and engineers from industry, universities, and research laboratories, including truck and high-speed train manufacturers and operators. All were gathered to discuss computer simu- tion and experimental techniques to be applied for the design of the more efficient trucks, buses and high-speed trains required in future years. This was the second conference in the series. The focus of the first conference in 2002 was the interplay between computations and experiment in minimizing ae- dynamic drag. The present proceedings, from the 2007 conference, address the development and application of advanced aerodynamic simulation and experim- tal methods for state-of-the-art analysis and design, as well as the development of new ideas and trends holding promise for the coming 10-year time span. Also - cluded, are studies of heavy vehicle aerodynamic tractor and trailer add-on - vices, studies of schemes to delay undesirable flow separation, and studies of - derhood thermal management.
One of the next challenges in vehicular technology field is to improve drastically the road safety. Current developments are focusing on both vehicle platform and diverse assistance systems. This book presents a new engineering approach based on lean vehicle architecture ready for the drive-by-wire technology. Based on a cognitive functionality split, execution and command levels are detailed. The execution level centralized over the stability control performs the motion vector coming from the command level. At this level the driver generates a motion vector which is continuously monitored by a virtual co-pilot. The integration of assistance systems in a safety relevant multi-agent system is presented here to provide first an adequate feedback to the driver to let him recover a dangerous situation. Robust strategies are also presented for the intervention phase once the command vehicle has to be optimized to stay within the safety envelope.
Ready access to computers has de?ned a new era in teaching and learning. The opportunity to extend the subject matter of traditional science and engineering curricula into the realm of scienti?c computing has become not only desirable, but also necessary. Thanks to portability and low overhead and operating cost, experimentation by numerical simulation has become a viable substitute, and occasionally the only alternative, to physical experimentation. The new framework has necessitated the writing of texts and monographs from a modern perspective that incorporates numerical and computer progr- ming aspects as an integral part of the discourse. Under this modern directive, methods, concepts, and ideas are presented in a uni?ed fashion that motivates and underlines the urgency of the new elements, but neither compromises nor oversimpli?es the rigor of the classical approach. Interfacing fundamental concepts and practical methods of scienti?c c- puting can be implemented on di?erent levels. In one approach, theory and implementation are kept complementary and presented in a sequential fashion. In another approach, the coupling involves deriving computational methods and simulation algorithms, and translating equations into computer code - structions immediately following problem formulations. Seamlessly interjecting methods of scienti?c computing in the traditional discourse o?ers a powerful venue for developing analytical skills and obtaining physical insight.
Micromechanisms of Fracture and Fatigue forms the culmination of 20 years of research in the field of fatigue and fracture. It discusses a range of topics and comments on the state of the art for each. The first part is devoted to models of deformation and fracture of perfect crystals. Using various atomistic methods, the theoretical strength of solids under simple and complex loading is calculated for a wide range of elements and compounds, and compared with experimental data. The connection between the onset of local plasticity in nanoindentation tests and the ideal shear strength is analysed using a multi-scale approach. Moreover, the nature of intrinsic brittleness or ductility of perfect crystal lattices is demonstrated by the coupling of atomistic and mesoscopic approaches, and compared with brittle/ductile behaviour of engineering materials. The second part addresses extrinsic sources of fracture toughness of engineering materials, related to their microstructure and microstructurally-induced crack tortuosity. Micromechanisms of ductile fracture are also described, in relation to the fracture strain of materials. Results of multilevel modelling, including statistical aspects of microstructure, are used to explain remarkable phenomena discovered in experiments. In the third part of the book, basic micromechanisms of fatigue cracks propagation under uniaxial and multiaxial loading are discussed on the basis of the unified mesoscopic model of crack tip shielding and closure, taking both microstructure and statistical effects into account. Applications to failure analysis are also outlined, and an attempt is made to distinguish intrinsic and extrinsic sources of materials resistance to fracture. Micromechanisms of Fracture and Fatigue provides scientists, researchers and postgraduate students with not only a deep insight into basic micromechanisms of fracture behaviour of materials, but also a number of engineering applications.
Recent developments in information processing systems have driven the advancement of numerical simulations in engineering. New models and simulations enable better solutions for problem-solving and overall process improvement. Advanced Numerical Simulations in Mechanical Engineering is a pivotal reference source for the latest research findings on advanced modelling and simulation method adopted in mechanical and mechatronics engineering. Featuring extensive coverage on relevant areas such as fuzzy logic controllers, finite element analysis, and analytical models, this publication is an ideal resource for students, professional engineers, and researchers interested in the application of numerical simulations in mechanical engineering.
This book concentrates on the design and development of integrated optic waveguide sensors using silicon based materials. The implementation of such system as a tool for detecting adulteration in petroleum based products as well as its use for detection of glucose level in diabetes are highlighted. The first chapters are dedicated to the development of the theoretical model while the final chapters are focused on the different applications of such sensors. It gives the readers the full background in the field of sensors, reasons for using silicon oxynitride as a potential waveguide material as well as its fabrication processes and possible uses.
Some years ago, silicon-based mechanical sensors, like pressure sensors, accelerometers and gyroscopes, started their successful advance. Every year, hundreds of millions of these devices are sold, mainly for medical and automotive applications. The airbag sensor on which research already started several decades ago at Stanford University can be found in every new car and has saved already numerous lives. Pressure sensors are also used in modern electronic blood pressure equipment. Many other mechanical sensors, mostly invisible to the public, perform useful functions in countless industrial and consumer products.
After a short introduction, Professor Bao discusses the main issues relevant to silicon-based mechanical sensors. First a thorough treatment of stress and strain in diaphragms and beams is presented. Next, vibration of mechanical structures is illuminated, followed by a chapter on air damping. These basic chapters are then succeeded by chapters in which capacitive and piezoresistive sensing techniques are amply discussed. The book concludes with chapters on commercially available pressure sensors, accelerometers and resonant sensors in which the above principles are applied.
This book presents recent research into developing and applying computational tools to estimate the performance and safety of hydraulic structures from the planning and construction stage to the service period. Based on the results of a close collaboration between the author and his colleagues, friends, students and field engineers, it shows how to achieve a good correlation between numerical computation and the actual in situ behavior of hydraulic structures. The book's heuristic and visualized style disseminates the philosophy and road map as well as the findings of the research. The chapters reflect the various aspects of the three typical and practical methods (the finite element method, the block element method, the composite element method) that the author has been working on and made essential contributions to since the 1980s. This book is an advanced continuation of Hydraulic Structures by the same author, published by Springer in 2015.
Practical Ship Hydrodynamics, Second Edition, introduces the reader to modern ship hydrodynamics. It describes experimental and numerical methods for ship resistance and propulsion, maneuvering, seakeeping, hydrodynamic aspects of ship vibrations, and hydrodynamic options for fuel efficiency, as well as new developments in computational methods and model testing techniques relating to marine design and development. Organized into six chapters, the book begins with an overview of problems and approaches, including the basics of modeling and full-scale testing, prediction of ship hydrodynamic performance, and viscous flow computations. It proceeds with a discussion of the marine applications of computational fluid dynamics and boundary element methods, factors affecting ship hydrodynamics, and simple design estimates of hydrodynamic quantities such as resistance and wake fraction. Seakeeping of ships is investigated with respect to issues such as maximum speed in a seaway, route optimization (routing), structural design of the ship with respect to loads in seaways, and habitation comfort and safety of people on board. Exercises and solutions, formula derivations, and texts are included to support teaching or self-studies. This book is suitable for marine engineering students in design and hydrodynamics courses, professors teaching a course in general fluid dynamics, practicing marine engineers and naval architects, and consulting marine engineers.
This book introduces and analyzes the models for engineering leadership and competency skills, as well as frameworks for industry-academia collaboration and is appropriate for students, researchers, and professionals interested in continuous professional development. The authors look at the organizational structures of engineering education in knowledge-based economies and examine the role of innovation and how it is encouraged in schools. It also provides a methodological framework and toolkit for investigating the needs of engineering and technology skills in national contexts. A detailed empirical case study is included that examines the leadership competencies that are needed in knowledge-based economies and how one university encourages these in their program. The book concludes with conceptual modeling and proposals of specific organizational structures for implementation in engineering schools, in order to enable the development of necessary skills for future engineering graduates.
Increasingly, robots are being used in environments inhospitable to humans such as the deep ocean, inside nuclear reactors, and in deep space. Such robots are controlled by remote links to human operators who may be close by or thousands of miles away. The techniques used to control these robots is the subject of this book. The author begins with a basic introduction to robot control and then considers the important problems to be overcome: delays or noisy control lines, feedback and response information, and predictive displays. Readers are assumed to have a basic understanding of robotics though this may be their first exposure to the subject of telerobotics. Professional engineers and roboticists will find this an invaluable introduction to this subject. |
You may like...
Forsthoffer's Best Practice Handbook for…
William E. Forsthoffer
Hardcover
R5,626
Discovery Miles 56 260
Internal Combustion Engines…
Institution of Mechanical Engineers
Paperback
R4,908
Discovery Miles 49 080
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
Meriam's Engineering Mechanics…
James L. Meriam, L.G. Kraige, …
Paperback
R1,574
Discovery Miles 15 740
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
|