![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
It is our pleasure to present these proceedings for "The Aerodynamics of Heavy Vehicles II: Trucks, Buses and Trains" International Conference held in Lake - hoe, California, August 26-31, 2007 by Engineering Conferences International (ECI). Brought together were the world's leading scientists and engineers from industry, universities, and research laboratories, including truck and high-speed train manufacturers and operators. All were gathered to discuss computer simu- tion and experimental techniques to be applied for the design of the more efficient trucks, buses and high-speed trains required in future years. This was the second conference in the series. The focus of the first conference in 2002 was the interplay between computations and experiment in minimizing ae- dynamic drag. The present proceedings, from the 2007 conference, address the development and application of advanced aerodynamic simulation and experim- tal methods for state-of-the-art analysis and design, as well as the development of new ideas and trends holding promise for the coming 10-year time span. Also - cluded, are studies of heavy vehicle aerodynamic tractor and trailer add-on - vices, studies of schemes to delay undesirable flow separation, and studies of - derhood thermal management.
One of the next challenges in vehicular technology field is to improve drastically the road safety. Current developments are focusing on both vehicle platform and diverse assistance systems. This book presents a new engineering approach based on lean vehicle architecture ready for the drive-by-wire technology. Based on a cognitive functionality split, execution and command levels are detailed. The execution level centralized over the stability control performs the motion vector coming from the command level. At this level the driver generates a motion vector which is continuously monitored by a virtual co-pilot. The integration of assistance systems in a safety relevant multi-agent system is presented here to provide first an adequate feedback to the driver to let him recover a dangerous situation. Robust strategies are also presented for the intervention phase once the command vehicle has to be optimized to stay within the safety envelope.
The unique focus of the book is the close symbiotic relationship between design and manufacture. It covers a large number of actual issues in the field by authors from the main research groups involved in developing methods, models and tools for the improvement of design and manufacturing processes in companies. It presents a selection of thirty-three papers ensuing from the fifth International Conference on Integrated Design and Manufacturing in Mechanical Engineering, held at the University of Bath, UK, in April 2004. The contributions are divided in the following sections: two keynotes presenting the general synergies and relationships between the design and manufacturing processes through the concepts of production knowledge and integration; design strategies and methodologies, dealing with the critical element of knowledge in design and manufacturing processes and the methods with which designing can be undertaken collaboratively in an integrated manner; integrated design of manufacturing processes, which aim is to ensure a high quality product meeting all requirements, rapidly and at optimum cost; and design tools for particular applications in which texts optimising local decision have been grouped. The book is of interest to academics, students and practitioners specialising in design and manufacturing issues in mechanical engineering, who will find it of the greatest interest to compare various points of view within the fields broached throughout the Conference. This volume is recommended as a reference textbook for all researchers in this field. It will give teachning staff confronted with training methodologies in integrated design and production a toolto assess the scope of the development prospects in an extremely wide ranging field.
Ready access to computers has de?ned a new era in teaching and learning. The opportunity to extend the subject matter of traditional science and engineering curricula into the realm of scienti?c computing has become not only desirable, but also necessary. Thanks to portability and low overhead and operating cost, experimentation by numerical simulation has become a viable substitute, and occasionally the only alternative, to physical experimentation. The new framework has necessitated the writing of texts and monographs from a modern perspective that incorporates numerical and computer progr- ming aspects as an integral part of the discourse. Under this modern directive, methods, concepts, and ideas are presented in a uni?ed fashion that motivates and underlines the urgency of the new elements, but neither compromises nor oversimpli?es the rigor of the classical approach. Interfacing fundamental concepts and practical methods of scienti?c c- puting can be implemented on di?erent levels. In one approach, theory and implementation are kept complementary and presented in a sequential fashion. In another approach, the coupling involves deriving computational methods and simulation algorithms, and translating equations into computer code - structions immediately following problem formulations. Seamlessly interjecting methods of scienti?c computing in the traditional discourse o?ers a powerful venue for developing analytical skills and obtaining physical insight.
Micromechanisms of Fracture and Fatigue forms the culmination of 20 years of research in the field of fatigue and fracture. It discusses a range of topics and comments on the state of the art for each. The first part is devoted to models of deformation and fracture of perfect crystals. Using various atomistic methods, the theoretical strength of solids under simple and complex loading is calculated for a wide range of elements and compounds, and compared with experimental data. The connection between the onset of local plasticity in nanoindentation tests and the ideal shear strength is analysed using a multi-scale approach. Moreover, the nature of intrinsic brittleness or ductility of perfect crystal lattices is demonstrated by the coupling of atomistic and mesoscopic approaches, and compared with brittle/ductile behaviour of engineering materials. The second part addresses extrinsic sources of fracture toughness of engineering materials, related to their microstructure and microstructurally-induced crack tortuosity. Micromechanisms of ductile fracture are also described, in relation to the fracture strain of materials. Results of multilevel modelling, including statistical aspects of microstructure, are used to explain remarkable phenomena discovered in experiments. In the third part of the book, basic micromechanisms of fatigue cracks propagation under uniaxial and multiaxial loading are discussed on the basis of the unified mesoscopic model of crack tip shielding and closure, taking both microstructure and statistical effects into account. Applications to failure analysis are also outlined, and an attempt is made to distinguish intrinsic and extrinsic sources of materials resistance to fracture. Micromechanisms of Fracture and Fatigue provides scientists, researchers and postgraduate students with not only a deep insight into basic micromechanisms of fracture behaviour of materials, but also a number of engineering applications.
This book presents recent research into developing and applying computational tools to estimate the performance and safety of hydraulic structures from the planning and construction stage to the service period. Based on the results of a close collaboration between the author and his colleagues, friends, students and field engineers, it shows how to achieve a good correlation between numerical computation and the actual in situ behavior of hydraulic structures. The book's heuristic and visualized style disseminates the philosophy and road map as well as the findings of the research. The chapters reflect the various aspects of the three typical and practical methods (the finite element method, the block element method, the composite element method) that the author has been working on and made essential contributions to since the 1980s. This book is an advanced continuation of Hydraulic Structures by the same author, published by Springer in 2015.
Recent developments in information processing systems have driven the advancement of numerical simulations in engineering. New models and simulations enable better solutions for problem-solving and overall process improvement. Advanced Numerical Simulations in Mechanical Engineering is a pivotal reference source for the latest research findings on advanced modelling and simulation method adopted in mechanical and mechatronics engineering. Featuring extensive coverage on relevant areas such as fuzzy logic controllers, finite element analysis, and analytical models, this publication is an ideal resource for students, professional engineers, and researchers interested in the application of numerical simulations in mechanical engineering.
Practical Ship Hydrodynamics, Second Edition, introduces the reader to modern ship hydrodynamics. It describes experimental and numerical methods for ship resistance and propulsion, maneuvering, seakeeping, hydrodynamic aspects of ship vibrations, and hydrodynamic options for fuel efficiency, as well as new developments in computational methods and model testing techniques relating to marine design and development. Organized into six chapters, the book begins with an overview of problems and approaches, including the basics of modeling and full-scale testing, prediction of ship hydrodynamic performance, and viscous flow computations. It proceeds with a discussion of the marine applications of computational fluid dynamics and boundary element methods, factors affecting ship hydrodynamics, and simple design estimates of hydrodynamic quantities such as resistance and wake fraction. Seakeeping of ships is investigated with respect to issues such as maximum speed in a seaway, route optimization (routing), structural design of the ship with respect to loads in seaways, and habitation comfort and safety of people on board. Exercises and solutions, formula derivations, and texts are included to support teaching or self-studies. This book is suitable for marine engineering students in design and hydrodynamics courses, professors teaching a course in general fluid dynamics, practicing marine engineers and naval architects, and consulting marine engineers.
The objective of Volume III is to lay down the proper mathematical
foundations of the two-dimensional theory of shells. To this end,
it provides, without any recourse to any "a priori" assumptions of
a geometrical or mechanical nature, a mathematical justification of
two-dimensional nonlinear and linear shell theories, by means of
asymptotic methods, with the thickness as the "small"
parameter.
This book introduces and analyzes the models for engineering leadership and competency skills, as well as frameworks for industry-academia collaboration and is appropriate for students, researchers, and professionals interested in continuous professional development. The authors look at the organizational structures of engineering education in knowledge-based economies and examine the role of innovation and how it is encouraged in schools. It also provides a methodological framework and toolkit for investigating the needs of engineering and technology skills in national contexts. A detailed empirical case study is included that examines the leadership competencies that are needed in knowledge-based economies and how one university encourages these in their program. The book concludes with conceptual modeling and proposals of specific organizational structures for implementation in engineering schools, in order to enable the development of necessary skills for future engineering graduates.
Increasingly, robots are being used in environments inhospitable to humans such as the deep ocean, inside nuclear reactors, and in deep space. Such robots are controlled by remote links to human operators who may be close by or thousands of miles away. The techniques used to control these robots is the subject of this book. The author begins with a basic introduction to robot control and then considers the important problems to be overcome: delays or noisy control lines, feedback and response information, and predictive displays. Readers are assumed to have a basic understanding of robotics though this may be their first exposure to the subject of telerobotics. Professional engineers and roboticists will find this an invaluable introduction to this subject.
The principal object of this volume is the creation of a mathematical theory of deformations for elastic anisotropic thermodynamic piezoelastic plates, beams and shells with variable thickness. The book is divided into two parts. The first part deals with problems related to the construction of refined theories (such as those of Richhof-Love, von Karman-A. Fioppl, and Reissner) and their equivalent new models (depending on arbitrary control functions). These are investigated by means of a new variational principle. Methods of reduction, containing regular processes of study of spatial problems, are also studied. Topics treated include problems of solvability, error estimations, convergence of processes in Sobolev spaces and construction of effective schemes of solutions of two-dimensional boundary value problems for systems of partial differential equations. The second part considers stable projective methods, using classical orthogonal polynomials and a new class of spline-functions as coordinate systems, and their numerical realizations for a design of one- and two- dimensional boundary value problems from the first part. These efficient methods increase the possibilities of classical finite-difference, exponential- fitted, variational-discrete and alternating-direction methods. Audience: This book will be of interest to researchers and graduate students whose work involves mechanics, analysis, numerics and computation, mathematical modelling and industrial mathematics, calculus of variations, and design engineering.
As a new interdisciplinary research area, image-based geometric modeling and mesh generation integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.
To control mechanical processes one needs to obtain information about the state of the system, to process the information, and then to act on the results. Originally, the simplest controls were purely mechanical feedback systems; more complex systems required human intervention. At present, most controls are provided by purely electromechanical systems, but there are also many situations in which one needs sophisticated measurements for later analysis.
This book concentrates on the design and development of integrated optic waveguide sensors using silicon based materials. The implementation of such system as a tool for detecting adulteration in petroleum based products as well as its use for detection of glucose level in diabetes are highlighted. The first chapters are dedicated to the development of the theoretical model while the final chapters are focused on the different applications of such sensors. It gives the readers the full background in the field of sensors, reasons for using silicon oxynitride as a potential waveguide material as well as its fabrication processes and possible uses.
Althoughtheprinciplesofoperationofhelicalscrewmachines, ascompressors or expanders, have been well known for more than 100 years, it is only during the past 30 years that these machines have become widely used. The main reasons for the long period before they were adopted were their relatively poor e?ciency and the high cost of manufacturing their rotors. Two main developments led to a solution to these di?culties. The ?rst of these was the introduction of the asymmetric rotor pro?le in 1973. This reduced the bl- hole area, which was the main source of internal leakage by approximately 90%, and thereby raised the thermodynamic e?ciency of these machines, to roughly the same level as that of traditional reciprocating compressors. The second was the introduction of precise thread milling machine tools at - proximately the same time. This made it possible to manufacture items of complex shape, such as the rotors, both accurately and cheaply. From then on, as a result of their ever improving e?ciencies, high rel- bility and compact form, screw compressors have taken an increasing share of the compressor market, especially in the ?elds of compressed air production, and refrigeration and air conditioning, and today, a substantial proportion of compressors manufactured for industry are of this type. Despite, the now wide usage of screw compressors and the publication of many scienti?c papers on their development, only a handful of textbooks have been published to date, which give a rigorous exposition of the principles of their operation and none of these are in English
This book presents a unified hierarchical formulation of theories for three-dimensional continua, two-dimensional shells, one-dimensional rods, and zero-dimensional points. It allows readers with varying backgrounds easy access to fundamental understanding of these powerful Cosserat theories.
This Second Edition continues the fine tradition of its predecessor by exploring the various automatic control systems in aircraft and on board missiles. Considerably expanded and updated, it now includes new or additional material on: the effectiveness of beta-beta feedback as a method of obtaining coordination during turns using the F-15 as the aircraft model; the root locus analysis of a generic acceleration autopilot used in many air-to-air and surface-to-air guided missiles; the guidance systems of the AIM-9L Sidewinder as well as bank-to-turn missiles; various types of guidance, including proportional navigation and line-of-sight and lead-angle command guidance; the coupling of the output of a director fire control system into the autopilot; the analysis of multivariable control systems; and methods for modeling the human pilot, plus the integration of the human pilot into an aircraft flight control system. Also features many new additions to the appendices.
Metals are still the most widely used structural materials in the
manufacture of products and structures. Their properties are
extremely dependent on the processes they undergo to form the final
product. Successful manufacturing therefore depends on a detailed
knowledge of the processing of the materials involved. This highly
illustrated book provides that knowledge.
This is the second volume of a comprehensive two-volume treatment of mechanics intended for students of civil and mechanical engineering. Used for several years in courses at Bradley university, the text presents dynamics in a clear and straightforward way and emphasizes problem solving. More than 350 examples clarify the discussion. The diskette included with the book contains EnSolve, a program written by the authors for solving problems in engineering mechanics. The program runs on Macintosh and PC-DOS computers and includes the following: - a unit converter for SI to US units and vice versa - a graphics program for plotting functions and data - a set of numerical subroutines The graphics module will, among other features, fit smooth splines between data, plot regression lines and curves, and change scales ß including from arithmetic to log and log-log. The numerical routines will, for example, find roots of polynomials, solve systems of equations, invert matrices, differentiate and integrate, and solve boundary-value problems.
This book contains papers presented at the IUTAM/IACM Symposium Discretization Methods in Structural Mechanics II' held in Vienna, Austria, in June 1997. During the last decade the broad field of Discretization Methods in Structural Mechanics' has experienced a remarkable evolution. New aspects have come into focus. Many of them were stimulated by challenging requirements coming from high-tech applications. In these proceedings such recent developments are presented and discussed together with new trends and demands. In view of their relevance, emphasis was put on nonlinear finite element methods and boundary element methods as well as on the coupling of these two numerical methods. Novel developments in other discretization methods having the potential of opening new avenues for promising applications were also considered. The different sources of nonlinearities, such as large deformations, large strains, nonlinear material behaviour (including viscoplasticity, progressive damage, nonlinearities in composites and other microstructured materials), contact with or without friction, etc., require (a) a careful mathematical and mechanical description and modelling, (b) the development of efficient algorithms and (c) a sound computational treatment. Contributions meeting these requirements are presented. Further emphasis was laid on significant improvements concerning efficiency, accuracy and reliability of discretization methods in nonlinear structural mechanics (e.g. error estimation, self-adapting mesh refinement, multigrid methods). A number of papers deal with new aspects of sensitivity analysis and optimization. Neural network strategies as well as modern data processing architectures(such as parallel computers and transputers) and their impact on the developments of new algorithmic concepts are discussed. |
You may like...
Forsthoffer's Best Practice Handbook for…
William E. Forsthoffer
Hardcover
R5,626
Discovery Miles 56 260
Internal Combustion Engines…
Institution of Mechanical Engineers
Paperback
R4,908
Discovery Miles 49 080
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
|