![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
This volume constitutes the proceedings of the 1997 IUTAM Symposium, where invited researchers in acoustics, aeronautics, elastodynamics, electromagnetics, hydrodynamics, and mathematics discussed non-reflecting computational boundaries. The participants formulated benchmark problems for evaluating computational boundaries, as described in the first article.
The four year undergraduate course in Engineering is loaded with theoretical contents and the students hardly find enough time and opportunity to adequately grasp the physical and practical aspects of application of various engineering theories that are being taught. Therefore, certain practice-oriented knowledge inputs in these years may help them acquire and enhance proficiency in the industrial working systems and processes. This book attempts to provide certain practice-oriented knowledge inputs which may help young mechanical engineers who aspire to make a successful career in engineering goods manufacturing enterprises. The book seeks to provide a combination of Engineering and Production/Manufacturing Management aspects to enable young mechanical engineers to make a confident start at the workplace and eventually ascend to leading positions in the organization. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan and Bhutan)
This thesis introduces novel and significant results regarding the analysis and synthesis of positive systems, especially under l1 and L1 performance. It describes stability analysis, controller synthesis, and bounding positivity-preserving observer and filtering design for a variety of both discrete and continuous positive systems. It subsequently derives computationally efficient solutions based on linear programming in terms of matrix inequalities, as well as a number of analytical solutions obtained for special cases. The thesis applies a range of novel approaches and fundamental techniques to the further study of positive systems, thus contributing significantly to the theory of positive systems, a "hot topic" in the field of control.
Aerial Robotic Workers: Design, Modeling, Control, Vision and Their Applications provides an in-depth look at both theory and practical applications surrounding the Aerial Robotic Worker (ARW). Emerging ARWs are fully autonomous flying robots that can assist human operations through their agile performance of aerial inspections and interaction with the surrounding infrastructure. This book addresses all the fundamental components of ARWs, starting with the hardware and software components and then addressing aspects of modeling, control, perception of the environment, and the concept of aerial manipulators, cooperative ARWs, and direct applications. The book includes sample codes and ROS-based tutorials, enabling the direct application of the chapters and real-life examples with platforms already existing in the market.
This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.
The aim of the present book is to show, in a broad and yet deep way, the state of the art in computational science and engineering. Examples of topics addressed are: fast and accurate numerical algorithms, model-order reduction, grid computing, immersed-boundary methods, and specific computational methods for simulating a wide variety of challenging problems, problems such as: fluid-structure interaction, turbulent flames, bone-fracture healing, micro-electro-mechanical systems, failure of composite materials, storm surges, particulate flows, and so on. The main benefit offered to readers of the book is a well-balanced, up-to-date overview over the field of computational science and engineering, through in-depth articles by specialists from the separate disciplines.
During the last decades modelling of inelastic structural behaviour has achieved great attention. Wherever elastic designhas reached its limita sa consequence of increased loading, the related cons titutive rela tions meanwhile have become part of the engineer's practice. However, new materials with complex behaviour, further increasing loads at higher temperatures, as well as the implementation of stronger security demands have led to theconsequence that the preferentially used phenomenological concepts need to be verified and improved continuously. Caused by the a priori non linear character oft he material rela tions, all equations fort he description of every new phenomenon need to be reconsidered. According to this, since about a decade the idea succeeds that constitutive relations which represent material behaviour more re alistically can not only be deduced phe nomenologicallyfrom the laws of continuum mechanics. Sincet he observed behaviour is caused by processes taking place on the microscale, these processes and mechanisms need to be taken into consideration when determining the constitutive relations. The formulation of proper micro macro relations actu ally is one of the main emphases in thermoplasticity in the international research. The intentiono ft he IUTAM Symposium on 'Micro and Macrostructural Aspects of Thermoplasticity', held at the Ruhr University of Bochum, Germany, from August 25 to 29, 1997, wast o bring together eminent scientistsworking i n different fields of thermoplasticity with the aim thatt hey may exchange their ideas and activate this interaction.
A self-contained and systematic development of an aspect of analysis which deals with the theory of fundamental solutions for differential operators, and their applications to boundary value problems of mathematical physics, applied mathematics, and engineering, with the related computational aspects.
This book presents recent advances in the application of Lyapunov's method for distributed parameter systems to the control of vibration and noise. The material is appropriate for graduate and advanced undergraduate students as well as academic and industrial researchers in engineering and mathematics. The book uses detailed examples to introduce modeling, control theory, and mechatronic implementation for distributed vibration and noise applications. Adaptive, output feedback controllers are shown to asymptotically stabilize distributed vibration and noise and to learn system parameters. Visual feedback control using high speed video and setpoint regulation for systems with rigid body modes are presented. The book provides readers with the tools to model distributed vibration and noise systems, design model-based controllers that guarantee stability and robustness, and implement the controllers with the appropriate sensing, actuation, and control hardware and software.
The availability of computers has, in real terms, moved forward the practice of structural engineering. Where it was once enough to have any analysis given a complex configuration, the profession today is much more demanding. How engineers should be more demanding is the subject of this book. In terms of the theory of structures, the importance of geometric nonlinearities is explained by the theorem which states that "In the presence of prestress, geometric nonlinearities are of the same order of magnitude as linear elastic effects in structures. " This theorem implies that in most cases (in all cases of incremental analysis) geometric nonlinearities should be considered. And it is well known that problems of buckling, cable nets, fabric structures, ... REQUIRE the inclusion of geometric nonlinearities. What is offered in the book which follows is a unified approach (for both discrete and continuous systems) to geometric nonlinearities which incidentally does not require a discussion of large strain. What makes this all work is perturbation theory. Let the equations of equilibrium for a system be written as where P represents the applied loads, F represents the member forces or stresses, and N represents the operator which describes system equilibrium.
Understanding Injection Molds opens up the entire subject of injection mold technology, including numerous special procedures, in a well-grounded and practical way. It is specifically intended for beginners, young professionals, business owners, and engineering students. The chapters are clearly structured and easy to understand. The book is designed so that it provides a complete basic knowledge of injection molds in chronological order as well as day-to-day guidance and advice. The numerous colour figures facilitate a rapid understanding of the content, which is especially helpful to the beginner who wants to learn about injection molds quickly. In the forefront of the description are thermoplastic molds. Divergent processes for thermoset or elastomer molds are explained at the end of each chapter. This book captures the current state of the art, and is written by authors who are specialists in the field. The second edition has been updated and improved throughout.
Materials metrology is the measurement science used for determining materials property data. An essential element is the symbiosis between the understanding of materials behaviour and the development of suit- able measurement techniques which, through the provision of stand- ards, enable design engineers and plant operators to acquire materials data of appropriate precision. This book is concerned only with those aspects of materials metrology and standards that relate to the design and performance in service ofstructuresand consumerproducts. Itdoes not consider their important role in the processing ofmaterials. Theeditorsare grateful for thecommitmentand patience oftheexperts who contributed the various chapters. In addition, help from staffin the Division ofMaterials Metrology, National Physical Laboratory,inassist- ing with the task of refereeing the chapters is gratefully acknowledged. The production of this book was carried out as part of the Materials Measurement Programme of underpinning research financed by the United Kingdom Department ofTrade and Industry. Brian F. Dyson Malcolm S. Loveday MarkG. Gee Division of Materials Metrology National Physical Laboratory Teddington, TWll OLW UK CHAPTER 1 Materials metrology and standards: an introduction B. F. Dyson, M. S. Loveday and M. G. Gee 1. 1 MATERIALS ASPECTS OF STRUCTURAL DESIGN Knowledge concerning the behaviour of materials has always been vital for the success of manufactured products, but never more so than at the present time.
In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.
This book introduces readers to the "Jaya" algorithm, an advanced optimization technique that can be applied to many physical and engineering systems. It describes the algorithm, discusses its differences with other advanced optimization techniques, and examines the applications of versions of the algorithm in mechanical, thermal, manufacturing, electrical, computer, civil and structural engineering. In real complex optimization problems, the number of parameters to be optimized can be very large and their influence on the goal function can be very complicated and nonlinear in character. Such problems cannot be solved using classical methods and advanced optimization methods need to be applied. The Jaya algorithm is an algorithm-specific parameter-less algorithm that builds on other advanced optimization techniques. The application of Jaya in several engineering disciplines is critically assessed and its success compared with other complex optimization techniques such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and other recently developed algorithms.
Gain a Deeper Understanding of Mechanical Fastening: Assemble More Efficient and Competitive Products A good design, quality parts, and properly executed assembly procedures and processes result in well-fastened assemblies. Utilizing a combined knowledge of mechanical assembly engineering and fastening technology, Mechanical Fastening, Joining, and Assembly, Second Edition provides readers with a solid understanding of mechanical fastening, joining, and assembly information. Based on the author's experience in the field, this updated mechanical arts guide and reference chronicles the technical progress since the first edition was published more than a decade ago. Provides Case Studies Showing Real-World Applications for Commonly Used Assemblies The second edition addresses recent trends in the industry, and looks at new fastening technologies used in aerospace, automotive, and other key areas. It explains the fastening function in depth, and describes the types of fastening approaches that can be used effectively. The revised text expands on the presentation and review of fastened components, detailing the assembly, design, manufacturing, and installation of fastener products and procedures. It covers specific joining applications, including vibration, standard, and special materials; details environmental factors; and provides useful reference charts for future use. What's New in the Second Edition: Provides an up-to-date selection of technologies Contains practical approaches to modern fastener technology Reviews engineering fundamentals with a focus on their application in the fastener industry Includes a section on fastener statics Expands on fastener manufacturing processes, most specifically cold heading and roll threading Adds fastener dynamics to draw attention to forces in motion (wind turbine hub turning in strong winds) and fastener strength of materials Extends review of the economics of fastening and provides some tools for engineering economics Examines the difference in static and dynamic strengths Considers fastener materials in this new century, provides some observations about the fastener laboratory, and discusses electrical theory Addresses sustainability, application product management, thermodynamics, energy systems, and new thought maps for application analysis Takes a look at a favorite application, D&D 100, and more Mechanical Fastening, Joining, and Assembly, Second Edition is accessible to novices and experienced technologists and engineers, and covers the latest in fastener technology and assembly training.
Modern computational techniques, such as the Finite Element Method, have, since their development several decades ago, successfully exploited continuum theories for numerous applications in science and technology. Although standard continuum methods based upon the Cauchy-Boltzmann continuum are still of great importance and are widely used, it increasingly appears that material properties stemming from microstructural phenomena have to be considered. This is particularly true for inhomogeneous load and deformation states, where lower-scale size effects begin to affect the macroscopic material response; something standard continuum theories fail to account for. Following this idea, it is evident that standard continuum mechanics has to be augmented to capture lower-scale structural and compositional phenomena, and to make this information accessible to macroscopic numerical simulations.
This title is a NATED (Report 191) subject for N2 which is the 2nd level in the National Certificate. Level 3 refers to its level within the National Qualifications Framework. Fitting and machining theory NQF level 3 is written in line with the unit standards of the MERSETA, previously known as the metal industry, and with the current syllabus of the department of education. The title follows a modular compe-tency-based approach. This text assists the facilitator and learner to achieve success with its outcomes-based approach. Self-assessment questions are provided to help learners identify areas in which they can improve. There are also assignments at the end of each learning unit that allow learners to practise and improve their skills. Some learning units end with a checklist where learners can see which critical cross-field outcomes are covered.
This volume contains the proceedings of the 2000 International Congress of Theoretical and Applied Mechanics. The book captures a snapshot view of the state of the art in the field of mechanics and will be invaluable to engineers and scientists from a variety of disciplines.
Engineering Technology and Applications contains the contributions presented at the 2014 International Conference on Engineering Technology and Applications (ICETA 2014, Tsingtao, China, 29-30 April 2014). The book is divided into three main topics: - Civil and environmental engineering - Electrical and computer engineering - Mechanical engineering Considerable attention is also paid to big data, cloud computing, neural network algorithms and social network services. The book will be invaluable to professionals and academics in civil, environmental, electrical, computer and mechanical engineering.
In the era of Industry 4.0, the world is increasingly becoming smarter as everything from mobile phones to cars to TVs connects with unique addresses and communication mechanisms. However, in order to enable the smart world to be sustainable, ICT must embark into energy efficient paradigms. Green ICT is a moving factor contributing towards energy efficiency by reducing energy utilization through software or hardware procedures. Role of IoT in Green Energy Systems presents updated research trends in green technology and the latest product and application developments towards green energy. Covering topics that include energy conservation and harvesting, renewable energy, and green and underwater internet of things, this essential reference book creates further awareness of smart energy and critically examines the contributions of ICT towards green technologies. IT specialists, researchers, academicians, and students in the area of energy harvesting and energy management, and/or those working towards green energy technologies, wireless sensor networks, and smart applications will find this monograph beneficial in their studies.
This book is the second edition of Numerical methods for diffusion phenomena in building physics: a practical introduction originally published by PUCPRESS (2016). It intends to stimulate research in simulation of diffusion problems in building physics, by providing an overview of mathematical models and numerical techniques such as the finite difference and finite-element methods traditionally used in building simulation tools. Nonconventional methods such as reduced order models, boundary integral approaches and spectral methods are presented, which might be considered in the next generation of building-energy-simulation tools. In this reviewed edition, an innovative way to simulate energy and hydrothermal performance are presented, bringing some light on innovative approaches in the field.
Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings.
This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators. |
![]() ![]() You may like...
Public Sector Entrepreneurship - U.S…
Dennis Patrick Leyden, Albert N Link
Hardcover
R1,567
Discovery Miles 15 670
Individual Behaviors and Technologies…
Wesley Mendes-da-Silva
Hardcover
R4,676
Discovery Miles 46 760
Sustainability in the Chemistry…
Catherine Middlecamp, Andrew Jorgensen
Hardcover
R5,814
Discovery Miles 58 140
Smart Connected World - Technologies and…
Sarika Jain, San Murugesan
Hardcover
R3,896
Discovery Miles 38 960
Research Anthology on Early Childhood…
Information R Management Association
Hardcover
R8,581
Discovery Miles 85 810
Discontinuous Innovation: Learning To…
Peter Augsdorfer, John Bessant, …
Hardcover
R2,152
Discovery Miles 21 520
Single-Cell Omics - Volume 1…
Debmalya Barh, Vasco Ariston De Car Azevedo
Paperback
R4,264
Discovery Miles 42 640
Python Programming for Computations…
Computer Language
Hardcover
|