![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
1. Focuses on practical design and manufacturing process 2. Contains Industrial working experiences 3. Includes innovations in development of electric machines 4. Includes read-to-implement solutions in electric machine design 5. Discusses state-of-the-art technology in modern electric machine design
Topology-based methods are of increasing importance in the analysis and visualization of dataset from a wide variety of scientific domains such as biology, physics, engineering, and medicine. Current challenges of topology-based techniques include the management of time-dependent data, the representation large and complex datasets, the characterization of noise and uncertainty, the effective integration of numerical methods with robust combinatorial algorithms, etc. (see also below for a list of selected issues). While there is an increasing number of high-quality publications in this field, many fundamental questions remain unsolved. New focused efforts are needed in a variety of techniques ranging from the theoretical foundations of topological models, algorithmic issues related to the representation power of computer-based implementations as well as their computational efficiency, user interfaces for presentation of quantitative topological information, and the development of new techniques for systematic mapping of science problems in topological constructs that can be solved computationally. In this forum the editors have brought together the most prominent and best recognized researchers in the field of topology-based data analysis and visualization for a joint discussion and scientific exchange of the latest results in the field. The 2009 workshop in Snowbird, Utah, follows the two successful workshops in 2005 (Budmerice, Slovakia) and 2007 (Leipzig, Germany).
All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally "analog" disciplines-mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers' ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.
This edited volume summarizes research being pursued within the DFG Priority Programme 1748: "Reliable Simulation Methods in Solid Mechanics. Development of non-standard discretisation methods, mechanical and mathematical analysis", the aim of which was to develop novel discretisation methods based e.g. on mixed finite element methods, isogeometric approaches as well as discontinuous Galerkin formulations, including a sound mathematical analysis for geometrically as well as physically nonlinear problems. The Priority Programme has established an international framework for mechanical and applied mathematical research to pursue open challenges on an inter-disciplinary level. The compiled results can be understood as state of the art in the research field and show promising ways of further research in the respective areas. The book is intended for doctoral and post-doctoral students in civil engineering, mechanical engineering, applied mathematics and physics, as well as industrial researchers interested in the field.
The surge in COVID-19 cases leading to hospitalizations around the world quickly depleted hospital resources and reserves, forcing physicians to make extremely difficult life-or-death decisions on ventilator allocation between patients. Leaders in academia and industry have developed numerous ventilator support systems using both consumer- and industry-grade hardware to sustain life and to provide intermediate respiratory relief for hospitalized patients. This book is the first of its kind to discuss the respiratory pathophysiology underlying COVID-19, explain ventilator mechanics, provide and evaluate a repository of innovative ventilator support devices conceived amid the pandemic, and explain both hardware and software components necessary to develop an inexpensive ventilator support device. This book serves both as a historical record of the collaborative and innovative response to the anticipated ventilator shortage during the COVID-19 pandemic and as a guide for physicians, engineers, and DIY'ers interested in developing inexpensive transitory ventilator support devices.
This volume contains 17 papers on composite steel structures, presented at the International Conference organised by the Department of Civil and Structural Engineering, University College, Cardiff, UK. It covers the design of bridges, flooring design practices, connection design and cyclic tests.
A IUTAM symposium on 'Waves in Liquid/Gas and Liquid/Vapor Two-Phase Systems' was held in Kyoto, Japan, 9-13 May 1994. Sixty-three scientists partici pated coming from ten countries, and forty-two lectures were presented. The list of participants and the program are included in this volume. The symposium was held in response to the request of the participants in the IUTAM symposium 'Adiabatic Waves in Liquid-Vapor System' held at Gottingen in 1989. At that time, the need for another symposium in about five years had been indicated by all the participants. This symposium intends to develop the subject of wave properties in more general liquid-gas two-phase systems. Topics in this symposium may be classified as (1) waves in liquid-gas bubble systems including interfacial effects, (2) waves in gas( vapor )-droplets systems, (3) waves in films or stratified systems, (4) waves with liquid-vapor transition, (5) waves with vapor-liquid transition, (6) wave propagation near the critical point and (7) waves with low pressure effect. As for topic (1), experiments, numerical simulations and analytical approaches to waves in bubly liquids were discussed. The importance of interbubble interactions through the liquid-field is now well established at least in terms of potential theory. There was also a progress concerning the well-posedness of governing equations for void waves. For pressure waves there were some new phenomena, such as bubble cluster formation and the occurrence of three-dimensional structures, in addition to a progress from more qualitative studies to quantitative ones."
Handbook of Rheological Additives covers how these additives are commonly applied in a wide range of industries, providing readers with information on over 300 organic and inorganic additives. This information is presented in individual tables for each product, whether commercial or generic. Data is divided into General Information, Physical Properties, Health and Safety, Ecological Properties, Use and Performance. Sections cover their state, odor, color, bulk density, density, specific gravity, relative density, boiling point, melting point, pour point, decomposition temperature, glass transition temperature, refractive index, vapor pressure, vapor density, volume resistivity, relative permittivity, ash content, pH, viscosity, rheological behavior, and more. Other notations include updates on NFPA classification, HMIS classification, OSHA hazard class, UN Risk phrases, UN Safety phrases, UN/NA class, DOT class, ADR/RIC class, ICAO/IATA class, IMDG class, packaging group, shipping name, food approvals, autoignition temperature, self-accelerating decomposition temperature, flash point, TLV ACGIH, NIOSH and OSHA, maximum exposure concentration IDLH, animal testing oral-rat, rabbit-dermal, mouse-oral, guinea pig-dermal, rat-dermal, rat-inhalation, mouse-inhalation, ingestion and skin and eye irritation.
This book provides the methods of solving the problems connected with cams-their design, application, and manufacture. It introduces the improvement of numerically controlled machine tools and the availability of computers in general. The book is useful for practicing and design engineers.
Intended as an introduction to robot mechanics for students of mechanical, industrial, electrical, and bio-mechanical engineering, this graduate text presents a wide range of approaches and topics. It avoids formalism and proofs but nonetheless discusses advanced concepts and contemporary applications. It will thus also be of interest to practicing engineers. The book begins with kinematics, emphasizing an approach based on rigid-body displacements instead of coordinate transformations; it then turns to inverse kinematic analysis, presenting the widely used Pieper-Roth and zero-reference-position methods. This is followed by a discussion of workplace characterization and determination. One focus of the discussion is the motion made possible by sperical and other novel wrist designs. The text concludes with a brief discussion of dynamics and control. An extensive bibliography provides access to the current literature.
Current research fields in science and technology were presented and discussed at the EKC2009, informing about the interests and directions of the scientists and engineers in EU countries and Korea. The Conference has emerged from the idea of bringing together EU and Korea to get to know each other better, especially in fields of science and technology.
For courses in vibration engineering. Building Knowledge: Concepts of Vibration in Engineering Retaining the style of previous editions, this Sixth Edition of Mechanical Vibrations effectively presents theory, computational aspects, and applications of vibration, introducing undergraduate engineering students to the subject of vibration engineering in as simple a manner as possible. Emphasising computer techniques of analysis, Mechanical Vibrations thoroughly explains the fundamentals of vibration analysis, building on the understanding achieved by students in previous undergraduate mechanics courses. Related concepts are discussed, and real-life applications, examples, problems, and illustrations related to vibration analysis enhance comprehension of all concepts and material. In the Sixth Edition, several additions and revisions have been made-including new examples, problems, and illustrations-with the goal of making coverage of concepts both more comprehensive and easier to follow.
Presents Total Manufacturing Assurance (TMA) as a holistic approach to manufacturing operations Focuses on analytics and performance assessment, along with Industry 4.0 and its role in advanced manufacturing, strategic planning, Innovation and engineering economics, as well as manufacturing processes, materials, and operations. It also covers product and manufacturing system reliability, maintainability, availability, quality, and safety, financial issues in decision making and engineering analysis Offers a case study for each chapter highlighting key TMA connections all with the same structure of overview, issue, objective, approach, results, and conclusion Discusses management and engineering techniques and tools, and their practical implementation, required to achieve TMA Expands on integrating fundamental manufacturing, engineering, and management topics, which are key in achieving TMA PowerPoint slides and a solutions manual are available to instructors for course adoptions.
The papers in this volume cover a broad spectrum of topics that represent the truly diverse nature of the field of composite materials. In recent years, composite materials have grown in strength, stature, and significance to become a key material of enhanced scientific interest and resultant research into understanding their behavior for selection and safe use in a wide spectrum of technology-related applications. This collection presents research and findings relevant to the latest advances in composites materials, specifically their use in aerospace, maritime, and even land applications. The editors have made every effort to bring together authors who put forth recent advances in their research while concurrently both elaborating on and thereby enhancing our prevailing understanding of the salient aspects related to the science, engineering, and far-reaching technological applications of composite materials.
This book, a survey of current practices in both planning and computer aids, is largely confined to space projections, block and detailed layout planning, material flow analysis, plan and elevation drawings-the core activities of most facilities planners.
This book describes the concepts and methods of a discipline called design assurance, and reveals many nontechnical aspects that are necessary for getting the work done in an engineering department. It is helpful to engineers and their managers in understanding and using design assurance techniques.
This book systematically introduces fast winding-based discharge strategies used for permanent magnet synchronous machine-based drives in electric vehicles (EVs) after a crash. The contents are from the author's final thesis securing his Ph.D. degree. The book contains seven chapters. Chapter 1 introduces the motivation of the research. Chapter 2 reviews five types of injury hazards that the occupants might suffer during crashes, addressing the high-voltage problem. In Chapters 3, 4, and 5, different winding-based discharge techniques are developed. Chapter 6 discusses the general principles for selecting an effective and efficient discharge technique for a particular EV. The conclusion is drawn in Chapter 7. Some author's achievements are listed at the end of the book. This book introduces professional knowledge about the subject of electrical engineering. It can be used as a reference book for technicians and scholars in this area.
This book aims to provide a valuable source, which focuses on interdisciplinary methods and affiliate research in the area of Geometric Modeling and Graphics. It aims to provide the user community with a variety of Geometric Modeling techniques, applications, systems and tools necessary for various real life problems in areas such as Designing objects, Medical Visualization, Scientific Data Visualization, Archaeology, Toon Rendering, Virtual Reality, Body Simulation, etc. It also aims to collect and disseminate information from various disciplines including Curve and Surface Fitting, Geometric Algorithms, Scientific Visualization, Shape Abstraction and Modeling, Intelligent CAD Systems, Computational Geometry, Solid Modeling, Shape Analysis and Description, Medical and Industrial Applications. The major goal of this book is to stimulate views and provide a source where researchers and practitioners can find the latest developments in the field of Geometric Modeling and related practical issues. The book is useful for researchers, practicing engineers, computer scientists, and many others who seek state of the art techniques, applications, systems and tools for Geometric Modeling and Graphics. The book will be a useful source of ideas and techniques for those who seek further research and practice in the development and applications of Computer Aided Geometric Modeling. The introduction to various techniques and applications, together with the developed systems and tools, may serve to stimulate the interest of undergraduate senior students as well as graduate students in the areas of Computer Science, Engineering, and Mathematics. The book consists of twenty-two well documented chapters distributed in three sections of Geometric Modeling Techniques, Applications, Systems and Tools.
The articles that comprise this distinguished annual volume for the Advances in Mechanics and Mathematics series have been written in honor of Gilbert Strang, a world renowned mathematician and exceptional person. Written by leading experts in complementarity, duality, global optimization, and quantum computations, this collection reveals the beauty of these mathematical disciplines and investigates recent developments in global optimization, nonconvex and nonsmooth analysis, nonlinear programming, theoretical and engineering mechanics, large scale computation, quantum algorithms and computation, and information theory.
The 1993 International Cryogenic Materials Conference (ICMC) was held at the Albuquer- que Convention Center in Albuquerque, New Mexico in conjunction with the Cryogenic Engi- neering Conference (CEC) on July 12-16. The interdependent subjects of the two conferences attracted more than eight hundred participants, who came to share the tatest advances in low- temperature materials science and technology. They also came for the important byproducts of the conferences: identification of new research areas, exploration of collaborative research possi- bilities, and the establishment and renewal of professional relationships. K. Theodore Hartwig (Texas A&M University), asChairman ofthe 1993 ICMC; T. Scott Kreilick (Hudson International Conductors), as Program Chairman; and thirteen other Program Committee members expertly arranged the ICMC sessions and activities. The contributions of the CEC board and its Conference Chairman Walter F. Stewart of the Los Alamos National Laboratory (LANL) were centrat to the organization ofthe tenth CEC/ICMC, which was hosted by LANL. The local arrangements and management, under the skillful guidance of Jan C. Hull (LANL), were exemplary. Frederick Edeskuty (LANL) served as Exhibits Chairman, and L. Kim Nguyen (LANL), as Conference Support Liaison.
Many materials or media in nature and technology possess a microstructure which determines their macroscopic behaviour. The knowledge of the relevant mechanisms is often more comprehensive on the micro than on the macro scale. On the other hand, not all information on the micro level is relevant for the understanding of this macro behaviour. Therefore, averaging and homogenization methods are needed to select only the specific information from the micro scale, which influences the macro scale. These methods also open the possibility to design or to influence microstructures with the objective to optimize their macro behaviour. This book presents the development of new methods in this interdisciplinary field of macro- micro-interactions of different engineering branches like mechanical and process engineering, applied mathematics, theoretical, and computational physics. In particular, solids with microstructures and particle systems are considered.
This book provides a systematic and standardized approach based on the authors' over 30 years of research experience with weight function methods, as well as the relevant literature. Fracture mechanics has become an indispensable tool for the design and safe operation of damage-tolerant structures in many important technical areas. The stress intensity factor-the characterizing parameter of the crack tip field-is the foundation of fracture mechanics analysis. The weight function method is a powerful technique for determining stress intensity factors and crack opening displacements for complex load conditions, with remarkable computational efficiency and high accuracy. The book presents the theoretical background of the weight function methods, together with a wealth of analytical weight functions and stress intensity factors for two- and three-dimensional crack geometries; many of these have been incorporated into national, international standards and industrial codes of practice. The accuracy of the results is rigorously verified, and various sample applications are provided. Accordingly, the book offers an ideal reference source for graduate students, researchers, and engineers whose work involves fracture and fatigue of materials and structures, who need not only stress intensity factors themselves but also efficient and reliable tools for obtaining them.
Focusses on solving problems in the Structural Dynamics using ABAQUS Software. Helps analyze and model different types of structures with various dynamic and cyclic loads. Discusses simulation of irregular-shaped objects composed of several different materials with multipart boundary conditions. Includes application of various load effects to the developed structural models in ABAQUS Software. Covers broad array of applications such as bridges, offshores, dam, seismic resistant systems, and so forth.
This book is concerned with the static and dynamic analysis of structures. Specifi cally, it uses the stiffness formulated matrix methods for use on computers to tackle some of the fundamental problems facing engineers in structural mechanics. This is done by covering the Mechanics of Structures, its rephrasing in terms of the Matrix Methods, and then their Computational implementation, all within a cohesivesetting. Although this book is designed primarily as a text for use at the upper-undergraduate and beginning graduate level, many practicing structural engineers will find it useful as a reference and self-study guide. Several dozen books on structural mechanics and as many on matrix methods are currently available. A natural question to ask is why another text? An odd devel opment has occurred in engineering in recent years that can serve as a backdrop to why this book was written. With the widespread availability and use of comput ers, today's engineers have on their desk tops an analysis capability undreamt of by previous generations. However, the ever increasing quality and range of capabilities of commercially available software packages has divided the engineering profession into two groups: a small group of specialist program writers that know the ins and outs of the coding, algorithms, and solution strategies; and a much larger group of practicing engineers who use the programs. It is possible for this latter group to use this enormous power without really knowing anything of its source." |
![]() ![]() You may like...
Meriam's Engineering Mechanics…
James L. Meriam, L.G. Kraige, …
Paperback
R1,447
Discovery Miles 14 470
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Krylov Subspace Methods - Principles and…
Joerg Liesen, Zdenek Strakos
Hardcover
R3,619
Discovery Miles 36 190
Fluid Dynamics - Part 1: Classical Fluid…
Anatoly I. Ruban, Jitesh S. B. Gajjar
Hardcover
R2,400
Discovery Miles 24 000
|