![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
This book is based on the author's lecture notes for his Introductory Newtonian Mechanics course at the Hellenic Naval Academy. In order to familiarize students with the use of several basic mathematical tools, such as vectors, differential operators and differential equations, it first presents the elements of vector analysis that are needed in the subsequent chapters. Further, the Mathematical Supplement at the end of the book offers a brief introduction to the concepts of differential calculus mentioned. The main text is divided into three parts, the first of which presents the mechanics of a single particle from both the kinetic and the dynamical perspectives. The second part then focuses on the mechanics of more complex structures, such as systems of particles, rigid bodies and ideal fluids, while the third part consists of 60 fully solved problems. Though chiefly intended as a primary text for freshman-level physics courses, the book can also be used as a supplemental (tutorial) resource for introductory courses on classical mechanics for physicists and engineers
This book introduces the electromagnetic compatibility(EMC) of electric vehicle(EV), including EMC of the whole vehicle, electromagnetic interference(EMI) prediction and suppression of motor drive system, EMI prediction and suppression of DC-DC converter, electromagnetic field safety and EMC of wireless charging system, signal integrity and EMC of the vehicle controller unit(VCU), EMC of battery management system(BMS), electromagnetic radiated emission diagnosis and suppression of the whole vehicle, etc. The analysis method, modeling and simulation method, test method and rectification method of EMC are demonstrated. The simulation and experimental results are presented as tables and figures. This book is useful as reference for graduate students, senior undergraduates and engineering technicians of vehicle engineering related majors. For EMI prediction, suppression and EMC optimization design for EVs, this book provides reference for engineers to solve EMC problems. This book is intended for senior undergraduates, postgraduates, lecturers and laboratory researchers engaged in electric vehicle and electromagnetic compatibility research.
The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape centsn, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape centsn. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1
This book focuses on the calculus of variations, including fundamental theories and applications. This textbook is intended for graduate and higher-level college and university students, introducing them to the basic concepts and calculation methods used in the calculus of variations. It covers the preliminaries, variational problems with fixed boundaries, sufficient conditions of extrema of functionals, problems with undetermined boundaries, variational problems of conditional extrema, variational problems in parametric forms, variational principles, direct methods for variational problems, variational principles in mechanics and their applications, and variational problems of functionals with vector, tensor and Hamiltonian operators. Many of the contributions are based on the authors' research, addressing topics such as the extension of the connotation of the Hilbert adjoint operator, definitions of the other three kinds of adjoint operators, the extremum function theorem of the complete functional, unified Euler equations in variational methods, variational theories of functionals with vectors, modulus of vectors, arbitrary order tensors, Hamiltonian operators and Hamiltonian operator strings, reconciling the Euler equations and the natural boundary conditions, and the application range of variational methods. The book is also a valuable reference resource for teachers as well as science and technology professionals.
This book contains a collection of peer-reviewed papers from the 2020 Conference on Multidisciplinary Engineering and Technology (COMET 2020) held online on December 15-16, 2020. It contains twenty-five papers covering energy harvester, thermodynamics, vibration, dynamic of mechanics, manufacturing process, computer-aided manufacturing (CAM), CFD analysis, electronics, and microcontroller.
Shell structures are used in all phases of structures, from space vehicles to deep submergence hulls, from nuclear reactors to domes on sport arenas and civic buildings. With new materials and manufacturing methods, curved thin walled structures are being used increasingly. This text is a graduate course in the theory of shells. It covers shells of isotropic materials, such as metal alloys and plastics, and shells of composite materials, such as fibre reinforced polymer, metal or ceramic matrix materials. It provides the essential information for an understanding of the underlying theory, and solution of some of the basic problems. It also provides a basis to study the voluminous shell literature. Beyond being primarily a textbook, it is intended also for self study by practising engineers who would like to learn more about the behaviour of shells. The book has two parts: Part I deals with shells of isotropic materials. In this part the mathematical formulations are introduced involving curvilinear coordinates. The techniques of solutions and resulting behavior is compared to planar thin walled isotropic structures such as plates and beams. Part II then treats the behavior of shells, involving anisotropic composite materials, so widely used today. The analysis involves the complications due to the many elastic constants, effects of transverse shear deformation, thermal thickening and offer effects arising from the properties of composite materials.
Advances in Imaging and Electron Physics, Volume 213, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
This proceedings book discusses state-of-the-art research on uncertainty quantification in mechanical engineering, including statistical data concerning the entries and parameters of a system to produce statistical data on the outputs of the system. It is based on papers presented at Uncertainties 2020, a workshop organized on behalf of the Scientific Committee on Uncertainty in Mechanics (Mecanique et Incertain) of the AFM (French Society of Mechanical Sciences), the Scientific Committee on Stochastic Modeling and Uncertainty Quantification of the ABCM (Brazilian Society of Mechanical Sciences) and the SBMAC (Brazilian Society of Applied Mathematics).
Automotive practical worksheets and assessments for students at Level 3 This Level 3 Student Worksheets book contains tasks that help you develop practical skills and prepare you for assessment. The tasks also reinforce the automotive theory that you will learn online and in the classroom. Each worksheet covers individual topics in a step-by-step manner, detailing how to carry out all of the most important tasks contained within the syllabus. Alongside each of these worksheets is a job card that can be filled in and used as evidence towards your qualification. Endorsed by the Institute of the Motor Industry for all of their Level 3 automotive courses. Step-by-step guides to the practical tasks required at all Level 3 qualifications. Job sheets for students to complete and feedback sheets for assessors to complete.
The text covers a wide range of topics such as mathematical modeling of crop pest control management, water resources management, impact of anthropogenic activities on atmospheric carbon dioxide concentrations, impact of climate changes on melting of glaciers and polar bear populations, dynamics of slow-fast predator-prey system and spread and control of HIV epidemic. It emphasizes the use of mathematical modeling to investigate the fluid flow problems including the breaking of viscoelastic jet, instability arising in nanofiber, flow in an annulus channel, and thermal instability in nano-fluids in a comprehensive manner. This book will be a readily accessible source of information for the students, researchers and policymakers interested in the application of mathematical and computational modeling techniques to investigate various biological and engineering phenomena. Features Focuses on the current modeling and computational trends to investigate various ecological, epidemiological, and engineering systems. Presents the mathematical modeling of a wide range of ecological and environmental issues including crop pest control management, water resources management, the effect of anthropogenic activities on atmospheric carbon dioxide concentrations, and impact of climate changes on melting of glaciers and polar bear population. Covers a wide range of topics including the breaking of viscoelastic jet, instability arising in nanofiber, flow in an annulus channel, and thermal instability in nano-fluids. Examines evolutionary models i.e., models of time-varying processes. Highlights the recent developments in the analytical methods to investigate the nonlinear dynamical systems. Showcases diversified applications of computational techniques to solve practical biological and engineering problems. The book focuses on the recent research developments in the mathematical modeling and scientific computing of biological and engineering systems. It will serve as an ideal reference text for senior undergraduate, graduate students, and researchers in diverse fields including ecological engineering, environmental engineering, computer engineering, mechanical engineering, mathematics, and fluid dynamics.
Provides derivation of the models used for calculating the risk and hazard of central oxygen toxicity Improves oxygen diving procedures described in the US Navy Diving Manual Includes procedures applicable to undertaking nitrox dives in combination with oxygen dives Pitches the material at highest technology readiness levels i.e. 9 TRL Aims to increase tactical capabilities of conducting diving special operations
Describes the quality management underpinnings of SMS, the four components, risk management, reliability engineering, SMS implementation, and the scientific rigor that must be designed into proactive safety. Covers international requirements and implications for harmonization across international boundaries. Offers an expanded treatment of safety culture. Discusses the integration of accident investigation and SMS. Presents an expanded discussion of Probabilistic Risk Assessment and Monte Carlo methods.
Introduces the nature of ethical decision making as applied to engineering values and issues. Helps readers develop a detailed ethics toolkit that identifies options and solutions and allows them to monitor and adjust as necessary. Features topics such as safety, sustainability, bioethics, diversity and equality, information technology and AI, as well as critical areas often overlooked in engineering texts, such as mentoring, advertising (for consulting firms), engineering sales, and much more Includes more than 50 case studies to illustrate a variety of scenarios. Offers an international perspective with codes of ethics from around the world, including Saudi Arabia, India, New Zealand, Chile, and Japan. Adds further cases and samples for discussion and a summary of key ideas.
Consensus Tracking of Multi-agent Systems with Switching Topologies takes an advanced look at the development of multi-agent systems with continuously switching topologies and relay tracking systems with switching of agents. Research problems addressed are well defined and numerical examples and simulation results are given to demonstrate the engineering potential. The book is aimed at advanced graduate students in control engineering, signal processing, nonlinear systems, switched systems and applied mathematics. It will also be a core reference for control engineers working on nonlinear control and switched control, as well as mathematicians and biomedical engineering researchers working on complex systems.
Complexity and Complex Thermoeconomic Systems describes the properties of complexity and complex thermo-economic systems as the consequence of formulations, definitions, tools, solutions and results consistent with the best performance of a system. Applying to complex systems contemporary advanced techniques, such as static optimization, optimal control, and neural networks, this book treats the systems theory as a science of general laws for functional integrities. It also provides a platform for the discussion of various definitions of complexity, complex hierarchical structures, self-organization examples, special references, and historical issues. This book is a valuable reference for scientists, engineers and graduated students in chemical, mechanical, and environmental engineering, as well as those in physics, ecology and biology, helping them better understand the complex thermodynamic systems and enhance their technical skills in research.
This book presents the latest developments in structural dynamics with particular emphasis on the formulation of equations of motion by finite element methods and their solution using microcomputers. The book discusses the use of frequency-dependent shape functions for realistic finite element modelling, as opposed to the approximate conventional shape functions. A useful feature of the book in handling the forced vibration problem is the separation of the solution into two parts; the steady state and transient. Advanced topics such as substructure and synthesis are viewed in a modern unified manner. A complete listing of the finite element programme NATVIB used is given.
This book provides insights into surface quality control techniques and applications based on high-definition metrology (HDM). Intended as a reference resource for engineers who routinely use a variety of quality control methods and are interested in understanding the data processing, from HDM data to final control actions, it can also be used as a textbook for advanced courses in engineering quality control applications for students who are already familiar with quality control methods and practices. It enables readers to not only assimilate the quality control methods involved, but also to quickly implement the techniques in practical engineering problems. Further, it includes numerous case studies to highlight the implementation of the methods using measured HDM data of surface features. Since MATLAB is extensively employed in these case studies, familiarity with this software is helpful, as is a general understanding of surface quality control methods.
Presents recent developments in sustainable materials from various engineering fields and industry applications. Emphasizes analytical strategies, computational, and simulation approaches develop innovative sustainable materials. Discusses an artificial intelligence approach, rapid prototyping, and customized production. Chapters are written by global experts. Includes case studies and research outcomes.
Records of the 2nd Eurographics Workshop on -Intelligent CAD Systems-, Held on April 19-23, 1988, at Konigshof Congress Centre, Veldhoven, the Netherlands
Automotive practical worksheets and assessments for students at Level 1 This Level 1 Student Worksheets book contains tasks that help you develop practical skills and prepare you for assessment. The tasks also reinforce the automotive theory that you will learn online and in the classroom. Each worksheet covers individual topics in a step-by-step manner, detailing how to carry out all of the most important tasks contained within the syllabus. Alongside each of these worksheets is a job card that can be filled in and used as evidence towards your qualification. Endorsed by the Institute of the Motor Industry for all of their Level 1 automotive courses. Step-by-step guides to the practical tasks required at all Level 1 qualifications. Job sheets for students to complete and feedback sheets for assessors to complete.
Thermodynamics is a common field of study involving many different specialties including physics, chemistry, geology, and cosmology. Thermodynamics is incredibly useful for manmade industrial processes related to material studies, renewable energy, and more. It is essential for professionals to stay current with the developments in thermodynamic systems, as thermodynamics proves vital for understanding natural macroprocesses related to geology, areology, and cosmology. Advances in the Modelling of Thermodynamic Systems discusses the recent advances in modeling of thermodynamic systems as well as the state-of-the-art manmade industrial processes and natural processes taking place on Earth and beyond. It reveals an interdisciplinary vision of thermodynamics from the minuscule to the immense. Covering topics such as entropy generation, linear modeling, and statistical analysis, this premier reference source is an essential resource for engineers, chemists, physicists, mechanics, geologists, cosmologists, students and educators of higher education, libraries, researchers, and academicians.
The Boundary Integral Equation (BIE) method has occupied me to various degrees for the past twenty-two years. The attraction of BIE analysis has been its unique combination of mathematics and practical application. The EIE method is unforgiving in its requirement for mathe matical care and its requirement for diligence in creating effective numerical algorithms. The EIE method has the ability to provide critical inSight into the mathematics that underlie one of the most powerful and useful modeling approximations ever devised--elasticity. The method has even revealed important new insights into the nature of crack tip plastic strain distributions. I believe that EIE modeling of physical problems is one of the remaining opportunities for challenging and fruitful research by those willing to apply sound mathematical discipline coupled with phys ical insight and a desire to relate the two in new ways. The monograph that follows is the summation of many of the successes of that twenty-two years, supported by the ideas and synergisms that come from working with individuals who share a common interest in engineering mathematics and their application. The focus of the monograph is on the application of EIE modeling to one of the most important of the solid mechanics disciplines--fracture mechanics. The monograph is not a trea tise on fracture mechanics, as there are many others who are far more qualified than I to expound on that topic."
Cold plasma is one of the newest technologies tested for food preservation. In the last decade, this novel approach has shown promising results as a disinfectant of food products and packaging materials. Cold plasma is also affordable, waterless, waste-free, and leaves no chemical residue on the product. This exciting new technology is covered thoroughly in Advances in Cold Plasma Applications for Food Preservation. The book presents the basic principles of cold plasma, examples of food products disinfected by cold plasma, and the challenges of using cold plasma to maximize microbial and spore inactivation. Some chapters are devoted to specific applications of the technology, such as the use of cold plasma for space missions. Insights about the required regulations for this technology are also discussed. Written and edited by experts in the field, Advances in Cold Plasma Applications for Food Preservation is aimed at academic researchers, food scientists, and government officials working on disinfection of food products.
This is the Proceedings of the IUTAM Symposium on Solver Coupling and Co-Simulation that was held in Darmstadt, Germany, September 18-20, 2017. The symposium focused on recent advances in the development of numerical methods for solver coupling, like new explicit, implicit and semi-implicit co-simulation methods, new approaches for realizing variable communication-time grids, and advances in the stability and convergence analysis of solver coupling methods. Recent developments in the practical application of co-simulation methods, for instance new fields of application for solver coupling approaches, new developments in the parallelization of dynamic models with co-simulation techniques, and standardization of co-simulation interfaces, i.e. standardization of data and model exchange were also discussed. The book brings together the research results of leading scientists in applied mathematics, mechanics, and engineering science, thus contributing to further develop numerical methods for coupled simulations.
Extended Finite Element and Meshfree Methods provides an overview of, and investigates, recent developments in extended finite elements with a focus on applications to material failure in statics and dynamics. This class of methods is ideally suited for applications, such as crack propagation, two-phase flow, fluid-structure-interaction, optimization and inverse analysis because they do not require any remeshing. These methods include the original extended finite element method, smoothed extended finite element method (XFEM), phantom node method, extended meshfree methods, numerical manifold method and extended isogeometric analysis. This book also addresses their implementation and provides small MATLAB codes on each sub-topic. Also discussed are the challenges and efficient algorithms for tracking the crack path which plays an important role for complex engineering applications. |
You may like...
5G-Enabled Vehicular Communications and…
Xiang Cheng, Rongqing Zhang, …
Hardcover
R3,106
Discovery Miles 31 060
Scalar Diffraction from a Circular…
Charles J. Daly, Navalgund A. H. K. Rao
Hardcover
R4,110
Discovery Miles 41 100
Computational Intelligence for Big Data…
D P Acharjya, Satchidananda Dehuri, …
Hardcover
Bayesian Approach to Image…
Sunil K. Kopparapu, Uday B. Desai
Hardcover
R4,085
Discovery Miles 40 850
Computational Intelligence and…
Grzegorz Borowik, Zenon Chaczko, …
Hardcover
The COVID-19 Pandemic and the…
Floribert Patrick Calvain Endong
Hardcover
R5,848
Discovery Miles 58 480
Semantic Modeling for the Acquisition of…
Wolfgang Foerstner, Lutz Plumer
Hardcover
R2,779
Discovery Miles 27 790
Introduction to Text Visualization
Nan Cao, Weiwei Cui
Hardcover
|