![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
Research in vibration response control deals not only with prevention of catastrophic failures of structures during natural or accidental/manmade hazards but also ensures the comfort of occupants through serviceability. Therefore, the focus of this book is on the theory of dynamic response control of structures by using different kinds of passive vibration control devices. The strategies used for controlling displacement, velocity, and acceleration response of structures such as buildings, bridges, and liquid storage tanks under the action of dynamic loads emanating from earthquake, wind, wave, and so forth are detailed. The book: Explains fundamentals of vibration response control devices and their practical applications in response mitigation of structures exposed to earthquake, wind, and wave loading Offers a comprehensive overview of each passive damper, its functioning, and mathematical modeling in a dynamical system Covers practical aspects of employing the passive control devices to some of the benchmark problems that are developed from existing buildings and bridges in different countries worldwide Includes MATLAB (R) codes for determining the dynamic response of single degree of freedom (SDOF) and multi-degree of freedom (MDOF) systems along with computational models of the passive control devices This book is aimed at senior undergraduate students, graduate students, and researchers in civil, earthquake, aerospace, automotive, mechanical engineering, engineering dynamics, and vibration control, including structural engineers, architects, designers, manufacturers, and other professionals.
Nonlinear Mechanics for Composite Heterogeneous Structures applies both classical and multi-scale finite element analysis to the non-linear, failure response of composite structures. These traditional and modern computational approaches are holistically presented, providing insight into a range of non-linear structural analysis problems. The classical methods include geometric and material non-linearity, plasticity, damage and contact mechanics. The cutting-edge formulations include cohesive zone models, the Extended Finite Element Method (XFEM), multi-scale computational homogenization, localization of damage, neural networks and data-driven techniques. This presentation is simple but efficient, enabling the reader to understand, select and apply appropriate methods through programming code or commercial finite element software. The book is suitable for undergraduate studies as a final year textbook and for MSc and PhD studies in structural, mechanical, aerospace engineering and material science, among others. Professionals in these fields will also be strongly benefited. An accompanying website provides MATLAB codes for two-dimensional finite element problems with contact, multi-scale (FE2) and non-linear XFEM analysis, data-driven and machine learning simulations.
Many systems architecture optimization problems are characterized by a variable number of optimization variables. Many classical optimization algorithms are not suitable for such problems. The book presents recently developed optimization concepts that are designed to solve such problems. These new concepts are implemented using genetic algorithms and differential evolution. The examples and applications presented show the effectiveness of the use of these new algorithms in optimizing systems architectures. The book focuses on systems architecture optimization. It covers new algorithms and its applications, besides reviewing fundamental mathematical concepts and classical optimization methods. It also provides detailed modeling of sample engineering problems. The book is suitable for graduate engineering students and engineers. The second part of the book includes numerical examples on classical optimization algorithms, which are useful for undergraduate engineering students. While focusing on the algorithms and their implementation, the applications in this book cover the space trajectory optimization problem, the optimization of earth orbiting satellites orbits, and the optimization of the wave energy converter dynamic system: architecture and control. These applications are illustrated in the starting of the book, and are used as case studies in later chapters for the optimization methods presented in the book.
This book statistically confirms that complexity and changing technologies that affect the way operators interact within the systems of the nuclear facili-ties exacerbate the severity of incidents caused by human error and details the application of the systems engineering process to reduce human error given industries' rapidly advancing technology. Technology, Human Performance, and Nuclear Facilities: A Systems Engineering Approach to Reduce Human Error provides a basic understand-ing of Human Error/ P erformance and its relation to industrial operations and advancing technologies incorporated into facilities. The book discusses the context surrounding the complexity of changing technologies at nuclear facili-ties and the potential worsening of problems caused by human error when technology advancements concerning operator interaction with control sys-tems are implemented. It presents how to reduce human error propensity given the incorporation of advanced technology and covers ways to reduce human error using the systems engineering process. Also offered are several concepts related to the operator's involvement in the systems engineering process and the human performance integration with system operational requirements and system testing, evaluation, and validation, and the procedures and training development in the systems engineering process. This book presents empirical evidence for the importance of human performance management in the con-text of nuclear facilities and offers practical recommendations for the improve-ment of this function. Systems engineers, plant/ design engineers, the nuclear industry, plant operations management, and those involved in industrial and nuclear safety will find something of interest in this book.
Peter Smith has joined forces with skilled consultants to take his piping series to the next level. The Planning Guide to Piping Design covers the entire process of planning a plant model project from conceptual to mechanical completion, and explains where the piping lead falls in the process along with his roles and responsibilities. Piping Engineering Leads (or PEL's) used to only receive on-the-job training to learn the operation of producing a process plant. Over time, more schools and programs have developed a more advanced curriculum for piping engineers and designers. However, younger generations of engineers and designers are growing up with a much more technological view of piping design and are in need of a handbook that will explain the proven methods of planning and monitoring the piping design in step-by-step processes. This handbook will provide mentors in the process piping industries the bridge needed for the upcoming engineer and designer to grasp the requirements of piping supervision in the modern age.
Blade Element Rotor Theory This book presents an extension of the conventional blade element rotor theory to describe the dynamic properties of helicopter rotors. The presented theory focuses on the accurate mathematical determination of the forces and moments by which a rotor affects its rotorcraft at specified flight conditions and control positions. Analyzing the impact of a blade's non-uniform properties, the book covers blade twisting, the non-rectangular planform shape of a blade, and inhomogeneous airfoil along the blade. It discusses inhomogeneous induced airflow around a rotor disc in terms of the blade element rotor theory. This book also considers the impact of flapping hinge offset on the rotor's dynamic properties. Features * Focuses on a comprehensive description and accurate determination of the rotor's aerodynamic properties * Presents precise helicopter rotor properties with inhomogeneous aerodynamic properties of rotor blades * Considers inhomogeneous distribution of induced flow * Discusses a mathematical model of a main helicopter rotor for a helicopter flight simulator This book is intended for graduate students and researchers studying rotor dynamics and helicopter flight dynamics
Surface Structure Modification and Hardening of Al-SI Alloys explores the hardening of material surfaces using concentrated energy flows resulting in the nanostructuring of surface layers. The authors demonstrate how these methods achieve a reduction in plastic deformation of the surface and a more uniform distribution of elastic stresses near the surface during operational use, significantly reducing part failure. It presents results from research and scientific and technological enterprises involved with the modification of light alloy surfaces for use in the automobile and aerospace industries. Additional key features include: Addresses theoretical and experimental research computer simulations of structural phase transformations at the nanolevel to create new materials Details and compares electroexplosion alloying, electron beam processing and electron-plasma alloying of an Al-Si Alloy Explains multiphase plasma jet treatment to obtain high-quality coatings with good and high functional properties This reference is a valuable resource for specialists in the field of physical material science, condensed state physics, metal science and thermal treatment and will be of interest to undergraduate and post-graduate students in these fields.
The second edition of Predicting Outdoor Sound is an up-to-date reference on the propagation of sound close to the ground and its prediction. New content includes comparisons between predictions and data for road traffic, railway and wind turbine noise; descriptions of source characteristics in the HARMONOISE model; propagation over rough seas, parallel low walls, and lattices; outlines of numerical methods; gabion (caged stones) and sonic crystal noise barriers; meteorological effects on noise barrier performance; and the prediction requirements for auralization. The book brings together relevant theories, prediction schemes, and data, thereby providing a basis for determining what model or scheme might be applicable for any situation. It also offers a background on useful analytical approximations and the restrictions, as well as difficulties and limitations associated with engineering prediction schemes. The text should be of considerable interest to researchers in outdoor sound propagation and, more generally, it should provide a comprehensive primer on the topic for lecturers, consultants and students in acoustics and noise control.
This volume of Modern Aspects of Electrochemistry has contributions from significant individuals in electrochemistry. This 7 chapter book discusses electrodeposition and the characterization of alloys and composite materials, the mechanistic aspects of lead electrodeposition, electrophoretic deposition of ceramic materials onto metal surfaces and the fundamentals of metal oxides for energy conversion and storage technologies. This volume also has a chapter devoted to the anodization of aluminum, electrochemical aspects of chemical and mechanical polishing, and surface treatments prior to metallization of semiconductors, ceramics, and polymers. This volume of Modern Aspects of Electrochemistry is ideal for scientists, researchers, engineers, and students interested in the latest findings in the field of electrodeposition and surface finishing.
This book presents select, recent developments in nonlinear and complex systems reported at the 1st Online Conference on Nonlinear Dynamics and Complexity, held on November 23-25, 2020. It provides an exchange recent developments, discoveries, and progresses in Nonlinear Dynamics and Complexity. The collection presents fundamental and frontier theories and techniques for modern science and technology, stimulates more research interest for exploration of nonlinear science and complexity; and passes along new knowledge and insight to the next generation of engineers and technologists in a range of fields.
Earthen levees are extensively used to protect the population and infrastructure from periodic floods and high water due to storm surges. The causes of failure of levees include overtopping, surface erosion, internal erosion, and slope instability. Overtopping may occur during periods of flooding due to insufficient freeboard. The most problematic situation involves the levee being overtopped by both surge and waves when the surge level exceeds the levee crest elevation with accompanying wave overtopping. Overtopping of levees produces fast-flowing, turbulent water velocities on the landward-side slope that can potentially damage the protective grass covering and expose the underlying soil to erosion. If overtopping continues long enough, the erosion may eventually result in loss of levee crest elevation and possibly breaching of the protective structure. Hence, protecting levees from erosion by surge overflow and wave overtopping is necessary to assure a viable and safe levee system. This book presents a cutting-edge approach to understanding overtopping hydraulics under negative free board of earthen levees, and to the study of levee reinforcing methods. Combining soil erosion test, full-scale laboratory overtopping hydraulics test, and numerical modeling for the turbulent overtopping hydraulics. It provides an analysis that integrates the mechanical and hydraulic processes governing levee overtopping occurrences and engineering approaches to reinforce overtopped levees. Topics covered: surge overflow, wave overtopping and their combination, full-scale hydraulic tests, erosion tests, overtopping hydraulics, overtopping discharge, and turbulent analysis. This is an invaluable resource for graduate students and researchers working on levee design, water resource engineering, hydraulic engineering, and coastal engineering, and for professionals in the field of civil and environmental engineering, and natural hazard analysis.
Includes a balanced coverage of modeling as well as applications of layout, materials handling, and warehousing Presents automated materials handling and warehousing along with queuing, queuing network, and basic simulation modeling Introduces new material on supply chain designing and management, aggregate planning and stochastic inventory control, transportation, and logistics/distribution Provides Layout-iQ software and data files from the authors own website Offers a solutions manual and PowerPoint slides for qualified textbook adoption
This book gives the background to differential-pressure flow measurement and goes through the requirements explaining the reason for them. For those who want to use an orifice plate or a Venturi tube the standard ISO 5167 and its associated Technical Reports give the instructions required. However, they rarely tell the users why they should follow certain instructions. This book helps users of the ISO standards for orifice plates and Venturi tubes to understand the reasons why the standards are as they are, to apply them effectively, and to understand the consequences of deviations from the standards.
In this self-consistent monograph, the author gathers and describes different mathematical techniques and combines all together to form practical procedures for the inverse analyses. It puts together topics coming from mathematical programming, with soft computing and Proper Orthogonal Decomposition, in order to show, in the context of structural analyses, how the things work and what are the main problems one needs to tackle. Throughout the book a number of examples and exercises are worked out in order to make reader practically familiar with discussed topics.
Provides a comprehensive guide about how to use machine vision for Industry 4.0 applications like analysis of images for automated inspections, object detection, object tracking etc. Includes case studies of Robotics Internet of Things with its current and future applications in Healthcare, Agriculture, Transportation, etc. It highlights the inclusion of impaired people in industry, like intelligent assistant that helps deaf-mute people to transmit instructions and warnings in a manufacturing process. It examines the significant technological advancements in machine vision for industrial Internet of things and explores the commercial benefits using the real world applications from healthcare to transportation. Provides a conceptual framework of Machine vision for the various Industrial applications. Addresses scientific aspects for a wider audience such as senior and junior engineers, undergraduate and post-graduate students, researchers, and anyone else interested in the trends, development, and opportunities for the Machine Vision for Industry 4.0 applications.
Remanufacturing and Advanced Machining Processes for Materials and Components presents current and emerging techniques for machining of new materials and restoration of components, as well as surface engineering methods aimed at prolonging the life of industrial systems. It examines contemporary machining processes for new materials, methods of protection and restoration of components, and smart machining processes. * Details a variety of advanced machining processes, new materials joining techniques, and methods to increase machining accuracy * Presents innovative methods for protection and restoration of components primarily from the perspective of remanufacturing and protective surface engineering * Discusses smart machining processes, including computer-integrated manufacturing and rapid prototyping, and smart materials * Provides a comprehensive summary of state-of-the-art in every section and a description of manufacturing methods * Describes the applications in recovery and enhancing purposes and identifies contemporary trends in industrial practice, emphasizing resource savings and performance prolongation for components and engineering systems The book is aimed at a range of readers, including graduate-level students, researchers, and engineers in mechanical, materials, and manufacturing engineering, especially those focused on resource savings, renovation, and failure prevention of components in engineering systems.
This beautiful book draws on Robert Race's extensive collection of traditional moving toys, looking at the ways the makers have achieved remarkable and varied results, often with very limited resources. Each chapter begins by looking at the mechanisms and materials used in some of these traditional moving toys, goes on to consider possible variations, and describes how to make a related moving toy. It continues, from this basis, to develop a design for an automaton. The book shows that designing and making these simple but wonderfully satisfying mechanical devices is fun, and that good results can be achieved in many different ways, using a variety of materials, tools and equipment such as wood and wire, card and paper, bamboo, string, tin plate and feathers.
This book provides a well-focused and comprehensive overview of novel technologies involved in advanced microfluidics based diagnosis via various types of prognostic and diagnostic biomarkers. This authors examine microfluidics based diagnosis in the biomedical field as an upcoming field with extensive applications. It provides a unique approach and comprehensive technology overview for diagnosis management towards early stages of various bioanalytes via cancer diagnostics diabetes, alzheimer disease, toxicity in food products, brain and retinal diseases, cardiovascular diseases, and bacterial infections etc. Thus, this book would encompass a combinatorial approach of medical science, engineering and biomedical technology. The authors provide a well-focused and comprehensive overview of novel technologies involved in advanced microfluidics based diagnosis via various types of prognostic and diagnostic biomarkers. Moreover, this book contains detailed description on the diagnosis of novel techniques. This book would serve as a guide for students, scientists, researchers, and microfluidics based point of care technologies via smart diagnostics and to plan future research in this valuable field.
Structured with a practical approach, Engineering Capstone Design guides engineering students to successfully manage capstone design projects. The book addresses the challenge of open-ended design projects, often in a team-based format, discussing team member roles, communication, and cooperation. It incorporates accreditation requirements and provides a modern framework for working with industry, reinforced by the inclusion of case studies. Offers a structured process for capstone design, responsive to ABET accreditation requirements Explains how to manage design projects under critical timelines and budgets Covers essential topics and steps in a capstone design sequence, including defining, conceiving, presenting, prototyping, building, testing, and redesigning Considers industry perspectives, as well as design competitions Includes case studies for a look into industry experience In addition to guiding engineering students conducting capstone design projects, this book will also interest industry professionals who are engaged in product development or design problem-solving.
Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. It enables students to tackle complex engineering heat transfer problems prevalent in practice. Covering heat transfer in high-speed flows and unsteady highly turbulent flows, the book also discusses enhanced heat transfer in channels, heat transfer in rotating channels, numerical modeling for turbulent flow heat transfer, and thermally developing heat transfer in a circular tube. The second edition features new content on Duhamel's superposition method, Green's function method for transient heat conduction, finite-difference method for steady state and transient heat conduction in cylindrical coordinates, and laminar mixed convection. It includes two new chapters on laminar-to-turbulent transitional heat transfer and turbulent flow heat transfer enhancement, in addition to end-of-chapter problems. The book bridges the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses for a single semester of intermediate heat transfer, advanced conduction/radiation heat transfer, or convection heat transfer. Features: Focuses on analyzing and solving classic heat transfer problems in conduction, convection, and radiation Covers 2-D and 3-D view factor evaluation, combined radiation with conduction and/or convection, and gas radiation optically thin and optically thick limits Features updated content and new chapters on mass and heat transfer analogy, thermally developing heat transfer in a circular tube, laminar-turbulent transitional heat transfer, unsteady highly turbulent flows, enhanced heat transfer in channels, heat transfer in rotating channels, and numerical modeling for turbulent flow heat transfer Provides step-by-step mathematical formula derivations, analytical solution procedures, and demonstration examples Includes end-of-chapter problems with an accompanying Solutions Manual for instructors This book is ideal for undergraduate and graduate students studying basic heat transfer and advanced heat transfer.
Elastic Wave Propagation in Structures and Materials initiates with a brief introduction to wave propagation, different wave equations, integral transforms including fundamentals of Fourier Transform, Wavelet Transform, Laplace Transform and their numerical implementation. Concept of spectral analysis and procedure to compute the wave parameters, wave propagation in 1-D isotropic waveguides, wave dispersion in 2-D waveguides is explained. Wave propagation in different media such as laminated composites, functionally graded structures, granular soils including non-local elasticity models is addressed. The entire book is written in modular form and analysis is performed in frequency domain. Features: Brings out idea of wave dispersion and its utility in the dynamic responses. Introduces concepts as Negative Group Speeds, Einstein's Causality and escape frequencies using solid mathematical framework. Discusses the propagation of waves in materials such as laminated composites and functionally graded materials. Proposes spectral finite element as analysis tool for wave propagation. Each concept/chapter supported by homework problems and MATLAB/FORTRAN codes. This book aims at Senior Undergraduates and Advanced Graduates in all streams of engineering especially Mechanical and Aerospace Engineering.
This revision and work book offers a very specific concept for learning the finite element method applying it to problems from statics of: It skips all the classical derivations and focusses only the essential final results. Based on these `essentials', fully solved example problems are presented. To facilitate the initial learning process, the authors compiled 10 recommended steps for a linear finite element solution procedure (`hand calculation') and all the solved examples follow this simple scheme. These 10 recommended steps help engineering students to master the finite element method and guide through fundamental standard problems, although there are neither 10 recommended steps for real-life engineering problems nor 10 standard problems that cover all possible problems that a young engineer may face during his first years of professional work. This revision course accompanies the textbook "Computational Statics and Dynamics: An Introduction Based on the Finite Element Method" by the same authors.
Creative Design Engineering: Introduction to an Interdisciplinary Approach presents the latest information on a field that has traditionally been primarily concerned with how to make things. However, as technology has advanced, and we have no shortage of things, a new challenge for today's engineers is what to make. In tackling this, our approaches to engineering design have come under the spotlight. This book presents solutions to this topic in different sections that highlight the basic concerns associated with innovation. First, design is considered a kind of universal human act. Second, it is an interdisciplinary approach that brings together perspectives from fields such as cognitive science and science of knowledge is adopted. Third, the scope of the discussion also includes the process of creating an initial idea for a new product (called the pre-design phase), as well as the use of the product in society (the post-design phase). Design engineers and researchers in engineering design will find this a user-friendly route to understanding the importance of creativity to engineering and how to implement new techniques to improve design outcomes. The book has been translated from the original Japanese book titled Sozo Dezain Kogaku [Creative Design Engineering] (published by the University of Tokyo Press 2014).
This proceedings volume highlights a selection of papers presented at the 7th International Conference on High Performance Scientific Computing, which took place in Hanoi, Vietnam, during March 19-23, 2018. The conference has been organized by the Institute of Mathematics of the Vietnam Academy of Science and Technology, the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University and the Vietnam Institute for Advanced Study in Mathematics. The contributions cover a broad, interdisciplinary spectrum of scientific computing and showcase recent advances in theory, methods, and practical applications. Subjects covered include numerical simulation, methods for optimization and control, machine learning, parallel computing and software development, as well as the applications of scientific computing in mechanical engineering, airspace engineering, environmental physics, decision making, hydrogeology, material science and electric circuits. |
You may like...
Innovative Computing Trends and…
Pandian Vasant, Igor Litvinchev, …
Hardcover
R2,653
Discovery Miles 26 530
Multimedia Data Mining and Analytics…
Aaron K Baughman, Jiang Gao, …
Hardcover
Advances in Data and Information…
Mohan L. Kolhe, Shailesh Tiwari, …
Hardcover
R5,284
Discovery Miles 52 840
Advanced Computer and Communication…
Hamzah Asyrani Sulaiman, Mohd Azlishah Othman, …
Hardcover
R5,387
Discovery Miles 53 870
Artificial Adaptive Systems Using Auto…
Paolo Massimo Buscema, Giulia Massini, …
Hardcover
R2,653
Discovery Miles 26 530
Towards Advanced Data Analysis by…
Christian Borgelt, Maria Angeles Gil, …
Hardcover
R4,064
Discovery Miles 40 640
A Heuristic Approach to Possibilistic…
Dmitri A. Viattchenin
Hardcover
|