![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
This collection focuses on all aspects of science and technology related to friction stir welding and processing.
T Level Engineering is written to cover the core elements of the new T Level Engineering qualifications. It provides essential information for T Level Engineering students and teachers, and will be useful as the student moves into higher education or an apprenticeship. The new T Level qualifications offer a realistic option to A Level and other vocational options. After completing a T Level in Engineering the student has a number of options including university courses and higher level apprenticeships. This book is written in an accessible fashion, no previous knowledge of engineering or technology is required, as all the technical terms are readily explained and a detailed glossary and list of abbreviations are included. Whether you are a student, tutor, or work placement manager you will surely find this book an enjoyable read and a handy reference book on your shelf. Andrew Livesey, MA, CEng is an experienced lecturer in engineering at Ashford College, Kent. He was a member of the DfE committee responsible for developing the T Levels and is a T Level Ambassador. His Routledge publications include: Basic Motorsport Engineering (2011), Advanced Motorsport Engineering (2012), The Repair of Vehicle Bodies (2018), Practical Motorsport Engineering (2018), Bicycle Engineering and Technology (2021) and Motorcycle Engineering (2021).
Nonlinear problems are of interest to engineers, physicists and mathematicians and many other scientists because most systems are inherently nonlinear in nature. As nonlinear equations are difficult to solve, nonlinear systems are commonly approximated by linear equations. This works well up to some accuracy and some range for the input values, but some interesting phenomena such as chaos and singularities are hidden by linearization and perturbation analysis. It follows that some aspects of the behavior of a nonlinear system appear commonly to be chaotic, unpredictable or counterintuitive. Although such a chaotic behavior may resemble a random behavior, it is absolutely deterministic. Analytical Routes to Chaos in Nonlinear Engineering discusses analytical solutions of periodic motions to chaos or quasi-periodic motions in nonlinear dynamical systems in engineering and considers engineering applications, design, and control. It systematically discusses complex nonlinear phenomena in engineering nonlinear systems, including the periodically forced Duffing oscillator, nonlinear self-excited systems, nonlinear parametric systems and nonlinear rotor systems. Nonlinear models used in engineering are also presented and a brief history of the topic is provided. Key features: * Considers engineering applications, design and control * Presents analytical techniques to show how to find the periodic motions to chaos in nonlinear dynamical systems * Systematically discusses complex nonlinear phenomena in engineering nonlinear systems * Presents extensively used nonlinear models in engineering Analytical Routes to Chaos in Nonlinear Engineering is a practical reference for researchers and practitioners across engineering, mathematics and physics disciplines, and is also a useful source of information for graduate and senior undergraduate students in these areas.
Unraveling the mystery of the negative thermal expansion of liquid water has been a challenge for scientists for centuries. Various theories have been proposed so far, but none has been able to solve this mystery. Since the thermodynamic properties of matter are determined by the interaction between particles, the mystery can be solved fundamentally if the thermodynamic physical quantities using the laws of thermodynamics and statistical mechanics are determined, the experimental results are reproduced, and the phenomena in relation to the shape of the interaction between particles are elucidated. In this sense, this book has fundamentally unraveled this mystery. In addition, it discusses the mysteries of isothermal compressibility, structural diversity, as well as liquefaction and boiling points of water in relation to the shape of the interaction between particles. It carefully explains the analysis and calculation methods so that they can be easily understood by the readers.
Provides an insight to safety managers in analyzing bad events and the ways to deal with them. Covers randomness, uncertainty, and predictability in detail. Explains concepts including reverse stress testing, real-time monitoring, and predictive maintenance in a comprehensive manner. Presents mathematical analysis of incidents and accidents using statistics and probabilities theories.
This textbook presents the fundamental of transport phenomena and metallurgical process modeling in easy-to-understand format. It covers all the important and basic concepts, derivations and numerical problems for the undergraduate and graduate engineering students. It includes topics such as fluid dynamics, mass and momentum balances, mass transfer, basic concepts of models and applications. This textbook can also be used as a reference book by engineers, professionals and research scientists to gain better understanding on mass and heat balances. Given the contents, this textbook will be highly useful for the core course of transport phenomena in metallurgical processes for graduate and advanced graduate students in various engineering disciplines. This textbook will also serve as a refresher course for advanced graduate students who are engaged in research related to transport phenomena and metallurgical processes.
Focusses on solving problems in the Structural Dynamics using ABAQUS Software. Helps analyze and model different types of structures with various dynamic and cyclic loads. Discusses simulation of irregular-shaped objects composed of several different materials with multipart boundary conditions. Includes application of various load effects to the developed structural models in ABAQUS Software. Covers broad array of applications such as bridges, offshores, dam, seismic resistant systems, and so forth.
To a large extent, our lives on this earth depend on systems that operate auto matically. Manysuchsystems can be found in nature and others are man made. These systems can be biological, electrical, mechanical, chemical, or ecological, to namejust a few categories. Our human body is full ofsystems whose conti nued automatic operation is vital for our existence. On a daily basis we come in contact with man made systems whose automatic operation ensures increa sed productivity, promotes economic development and improves the quality of life. A primary component that is responsible for the automatic operation of a system is a device or mechanism called the controller. In man made systems one must first design and then implement such a controller either as a piece of hardware or as software code in a computer. The safe and efficient automatic operation of such systems is testimony to the success of control theorists and practitioners over the years. This book presents new methods {or controller design. The process ofdeveloping a controller or control strategy can be dramatically improved if one can generate an appropriate dynamic model for the system under consideration. Robust control design deals with the question of how to develop such controllers for system models with uncertainty. In many cases dynamic models can be expressed in terms oflinear, time invariant differential equations or transfer functions."
This book is an outgrowth of the sixth international conference on integral methods in science and engineering. The chapters focus on the solution of mathematical models from various physical domains, using integral methods in conjunction with approximation schemes. Integral Methods in Science and Engineering describes the construction and application of various analytic and numerical integration techniques. Problem solving in areas such as solid mechanics, fluid dynamics, thermoelasticity, plates and shells, liquid crystals, diffusion and diffraction theory, Hamiltonian systems, resonance, nonlinear waves, plasma, flight dynamics, and structural networks are presented in an accessible manner. The book offers a vehicle for the quick dissemination of new results in these domains, and will help create an ideal environment for investigative interdisciplinary study among a variety of research areas. Topics: * Offers an illustration by prominent researchers of efficient methods of solution with numerical results and rigorous analytic methods * Presents applications of integral methods to a wide variety of mathematical and physical problems * Provides new results in the study of various physical and mechanical models * A clear, concise focus on a class of methodologies rather than a specific field of study This book is a practical resource for a broad audience of professionals, researchers, and practitioners in applied mathematics, mechanical engineering, and theoretical physics, who are interested in current research in ordinary and partial differential equations, integral equations, numerical analysis, mechanics of solids, fluid mechanics, and mathematical physics.Graduate students will find this a helpful guide to the wide range of applications that integral methods have in science and engineering.
Understand the benefits of robust statistics for signal processing with this authoritative yet accessible text. The first ever book on the subject, it provides a comprehensive overview of the field, moving from fundamental theory through to important new results and recent advances. Topics covered include advanced robust methods for complex-valued data, robust covariance estimation, penalized regression models, dependent data, robust bootstrap, and tensors. Robustness issues are illustrated throughout using real-world examples and key algorithms are included in a MATLAB Robust Signal Processing Toolbox accompanying the book online, allowing the methods discussed to be easily applied and adapted to multiple practical situations. This unique resource provides a powerful tool for researchers and practitioners working in the field of signal processing.
VIBROACOUSTIC SIMULATION Learn to master the full range of vibroacoustic simulation using both SEA and hybrid FEM/SEA methods Vibroacoustic simulation is the discipline of modelling and predicting the acoustic waves and vibration of particular objects, systems, or structures. This is done through finite element methods (FEM) or statistical energy analysis (SEA) to cover the full frequency range. In the mid-frequency range, both methods must be combined into a hybrid FEM/SEA approach. By doing so, engineers can model full frequency vibroacoustic simulations in complex technical systems used in aircraft, trains, cars, ships, and satellites. Indeed, hybrid approaches are increasingly used in the automotive, aerospace, and rail industries. Previously covered primarily in scientific journals, Vibroacoustic Simulation provides a practical approach that helps readers master the full frequency range of vibroacoustic simulation. Through a systematic approach, the book illustrates why both FEM and SEA are necessary in acoustic engineering and how both can be used in combination through hybrid methodologies. Striking a crucial balance between complex theories and practical applications, the text provides real-world examples of vibroacoustic simulation, such as fuselage simulation, interior-noise prediction for electric and combustion vehicles, train profiles, and more, to help elucidate the concepts described within. Vibroacoustic Simulation also features: A balance of complex theories with the nuts and bolts of real-world applications Detailed worked examples of junction equations Case studies from companies like Audi and Airbus that illustrate how the methods discussed have been applied in real-world projects A companion website that provides corresponding Python codes for all examples, allowing readers to work through the examples on their own Vibroacoustic Simulation is a useful reference for acoustic and mechanical engineers working in the automotive, aerospace, defense, or rail industries, as well as researchers and graduate students studying acoustics.
This book integrates bioengineering for solving health issues. It shows how the use of applied mechanics and strength of materials using 3D printing models, digital correlation techniques and computed tomography images, provides solutions to biology, medicine and mechanical engineering. The book provides clear processes and illustrations, several worked examples, and many projects. It helps scientists to analyze different modes of applying mechanical and biomedical concepts, physical principles to develop devices, sensors, prosthesis, orthotic systems, new materials and techniques that may improve the health system. It can be used in courses such as biomechanics and orthopedics, rehabilitation and mechanical engineering, also in rehabilitation or sports medicine.
The authors have tried to strike a balance between a short book chapter and a very detailed book for subject experts. There are three prime reasons behind for doing so: first, the field is quite interdisciplinary and requires simplified presentation for a person from non-parent discipline. The second reason for this short-version of a full book is that both the authors have seen students and technically oriented people, who were searching for this type of book on hydro energy. The third reason and motivation was considering engineers who are starting their career in hydro energy sector. This book is targeted to present a good starting background and basic understanding for such professionals.
Micromachined scanning mirrors are interesting for a wide variety
of applications because of their potential low cost, high speed,
low power consumption, and reliability. These mirrors can offer
significant advantages over macro-scale mirrors, but the
fundamental limitations of scanning mirrors have not been widely
discussed.
With new chapters on electrical system optimization and ISO 50001, this edition also covers the latest updates to codes and standards in the energy industry. Also included are chapters on energy economic analysis, energy auditing, waste heat recovery, utility system optimization, HVAC, cogeneration, control systems, energy management, compressed air system optimization and financing energy projects. Additional topics include emerging technologies such as oxy-fuel combustion, high efficiency burners, enhanced heat exchangers, and ceramic membranes for heat recovery as well as information on how to do an energy analysis of any system; electrical system optimization; state-of-the-art lighting and lighting controls. This reference will guide you step by step in applying the principles of energy engineering and management to the design of electrical, HVAC, utility, process and building systems for both new design and retrofit projects. The text is thoroughly illustrated with tables, graphs, diagrams and sample problems.
The International Conference on Mechanical Design and Production
has over the years established itself as an excellent forum for the
exchange of ideas in these established fields. The first of these
conferences was held in 1979. The seventh, and most recent,
conference in the series was held in Cairo during February 15-17,
2000. International engineers and scientists gathered to exchange
experiences and highlight the state-of-the-art research in the
fields of mechanical design and production. In addition a heavy
emphasis was placed on the issue of technology transfer. Over 100 papers were accepted for presentation at the
conference. "Current Advances in Mechanical Design & Production
VII" does not, however, attempt to publish the complete work
presented but instead offers a sample that represents the quality
and breadth of both the work and the conference. Ten invited papers and 54 ordinary papers have been selected for
inclusion in these proceedings. They cover a range of basic and
applied topics that can be classified into six main categories:
System Dynamics, Solid Mechanics, Material Science, Manufacturing
Processes, Design and Tribology, and Industrial Engineering and its
Applications.
The mathematical theory of Krylov subspace methods with a focus on solving systems of linear algebraic equations is given a detailed treatment in this principles-based book. Starting from the idea of projections, Krylov subspace methods are characterised by their orthogonality and minimisation properties. Projections onto highly nonlinear Krylov subspaces can be linked with the underlying problem of moments, and therefore Krylov subspace methods can be viewed as matching moments model reduction. This allows enlightening reformulations of questions from matrix computations into the language of orthogonal polynomials, Gauss-Christoffel quadrature, continued fractions, and, more generally, of Vorobyev's method of moments. Using the concept of cyclic invariant subspaces, conditions are studied that allow the generation of orthogonal Krylov subspace bases via short recurrences. The results motivate the important practical distinction between Hermitian and non-Hermitian problems. Finally, the book thoroughly addresses the computational cost while using Krylov subspace methods. The investigation includes effects of finite precision arithmetic and focuses on the method of conjugate gradients (CG) and generalised minimal residuals (GMRES) as major examples. There is an emphasis on the way algebraic computations must always be considered in the context of solving real-world problems, where the mathematical modelling, discretisation and computation cannot be separated from each other. The book also underlines the importance of the historical context and demonstrates that knowledge of early developments can play an important role in understanding and resolving very recent computational problems. Many extensive historical notes are included as an inherent part of the text as well as the formulation of some omitted issues and challenges which need to be addressed in future work. This book is applicable to a wide variety of graduate courses on Krylov subspace methods and related subjects, as well as benefiting those interested in the history of mathematics.
The book introduces advanced theories for deformation, damage, and failure in materials. The overall continuum mechanical framework was marked out and added by creep and damage mechanics of materials at elevated temperatures. The time-dependent and time-independent models of cyclic plasticity for low cycle and thermomechanical fatigue life assessment were specified in a very special manner: instead of three-dimensional statements, only one-dimensional rheological models were discussed. Anisotropic plasticity during non-proportional loading and anisotropy of yield/failure criteria is more and more important in modern applications. It is showing how the limit states of materials can be estimated. In addition, the damage and failure of composite materials demonstrate the possibility to extend continuum mechanics to continuum damage mechanics of composite materials.
The book provides a unifying insight into fluctuation phenomena in a broad variety of vibrational systems of current interest. It consists of individual chapters written by leading experts in the field. The chapters are self-contained and complement each other. The ongoing rapid development of well-characterized mesoscopic vibrational systems has made it possible to address fundamental physics problems and to explore new approaches to quantum and classical measurements, with applications to quantum information, condensed matter physics, and engineering. The book gives an account of major results in this direction. The topics include dynamics and quantum control of microcavity modes coupled to qubits, measurements with bifurcation-based amplifiers and new types of such amplifiers; switching rate scaling and new quantum mechanisms of metastable decay; wave mixing and parametric excitation in the quantum regime; collective phenomena and the interaction-induced discrete time symmetry breaking; and back-action and shot noise in electron-vibrational systems.
This book explores the evolution of products from the beginning idea through mass-production. Rather than prescribing a one-size-fits-all process, the authors explain the theory behind product development and challenge readers to develop their own customized development process uniquely suited for their individual situation. In addition to theory, the book provides development case studies, exercises and self-evaluation criteria at the end of each chapter, and a product development reference that introduces a wide variety of design tools and methods. Class-tested for three consecutive years by hundreds of students in four different courses, the book is an ideal text for senior design classes in mechanical engineering and related disciplines as well as a reference for practicing engineers/product designers.
This open access textbook, like Rayleigh's classic Theory of Sound, focuses on experiments and on approximation techniques rather than mathematical rigor. The second edition has benefited from comments and corrections provided by many acousticians, in particular those who have used the first edition in undergraduate and graduate courses. For example, phasor notation has been added to clearly distinguish complex variables, and there is a new section on radiation from an unbaffled piston. Drawing on over 40 years of teaching experience at UCLA, the Naval Postgraduate School, and Penn State, the author presents a uniform methodology, based on hydrodynamic fundamentals for analysis of lumped-element systems and wave propagation that can accommodate dissipative mechanisms and geometrically-complex media. Five chapters on vibration and elastic waves highlight modern applications, including viscoelasticity and resonance techniques for measurement of elastic moduli, while introducing analytical techniques and approximation strategies that are revisited in nine subsequent chapters describing all aspects of generation, transmission, scattering, and reception of waves in fluids. Problems integrate multiple concepts, and several include experimental data to provide experience in choosing optimal strategies for extraction of experimental results and their uncertainties. Fundamental physical principles that do not ordinarily appear in other acoustics textbooks, like adiabatic invariance, similitude, the Kramers-Kronig relations, and the equipartition theorem, are shown to provide independent tests of results obtained from numerical solutions, commercial software, and simulations. Thanks to the Veneklasen Research Foundation, this popular textbook is now open access, making the e-book available for free download worldwide. Provides graduate-level treatment of acoustics and vibration suitable for use in courses, for self-study, and as a reference Highlights fundamental physical principles that can provide independent tests of the validity of numerical solutions, commercial software, and computer simulations Demonstrates approximation techniques that greatly simplify the mathematics without a substantial decrease in accuracy Incorporates a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation Emphasizes actual applications as examples of topics explained in the text Includes realistic end-of-chapter problems, some including experimental data, as well as a Solutions Manual for instructors. Features "Talk Like an Acoustician" boxes to highlight key terms introduced in the text.
The subject of Elasticity can be approached from several points of view, - pending on whether the practitioner is principally interested in the mat- matical structure of the subject or in its use in engineering applications and, in the latter case, whether essentially numerical or analytical methods are envisaged as the solution method. My ?rst introduction to the subject was in response to a need for information about a speci?c problem in Tribology. As a practising Engineer with a background only in elementary Mechanics of - terials, I approached that problem initially using the concepts of concentrated forces and superposition. Today, with a rather more extensive knowledge of analytical techniques in Elasticity, I still ?nd it helpful to go back to these roots in the elementary theory and think through a problem physically as well as mathematically, whenever some new and unexpected feature presents di?culties in research. This way of thinking will be found to permeate this book. My engineering background will also reveal itself in a tendency to work examples through to ?nal expressions for stresses and displacements, rather than leave the derivation at a point where the remaining manipulations would be mathematically routine. The ?rst edition of this book, published in 1992, was based on a one semester graduate course on Linear Elasticity that I have taught at the U- versity of Michigan since 1983. |
You may like...
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
Strength of Materials and Structures
Carl T.F. Ross, John Case, …
Paperback
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
|