![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Structural engineering > General
Materials in Construction: An Introduction presents a clear and accessible introduction to the principles, practice and performance of construction materials. This new edition is being published as a companion to G. D. Taylor's Materials in Construction: Principles, Practice and Performance - an advanced text that will develop the topics presented in this book. The coverage of a wide range of construction materials provides a comprehensive foundation to the subject, and includes an overview of performance characteristics and standards for many materials. The text also reviews material properties, and examines and evaluates modes of deterioration while emphasising preventative techniques and remedial treatment. Throughout the text carefully devised example experiments and questions support the theory and practical information. Materials in Construction is an essential handbook for any student studying materials as part of a construction course at BTEC NC/D, HNC/D and undergraduate level.
This short book describes the basic technological aspects involved in the creation of purely clinch and clinch-adhesive joints made of different types of adherent materials and employing different joining technologies. Basic parameters that need to be taken into account in the design process are also presented, while a comparison of experimental testing of the hybrid joint with simple clinching for a combination of different joining materials underlines the advantages of opting for hybrid joints. The book's conclusions will facilitate the practical application of this new fastening technology.
This text addresses the modeling of vibrating systems with the perspective of finding the model of minimum complexity which accounts for the physics of the phenomena at play. The first half of the book (Ch.1-6) deals with the dynamics of discrete and continuous mechanical systems; the classical approach emphasizes the use of Lagrange's equations. The second half of the book (Ch.7-12) deals with more advanced topics, rarely encountered in the existing literature: seismic excitation, random vibration (including fatigue), rotor dynamics, vibration isolation and dynamic vibration absorbers; the final chapter is an introduction to active control of vibrations. The first part of this text may be used as a one semester course for 3rd year students in Mechanical, Aerospace or Civil Engineering. The second part of the text is intended for graduate classes. A set of problems is provided at the end of every chapter. The author has a 35 years experience in various aspects of Structural dynamics, both in industry (nuclear and aerospace) and in academia; he was one of the pioneers in the field of active structures. He is the author of several books on random vibration, active structures and structural control.
This book comprises the proceedings of the Annual Conference of the Canadian Society of Civil Engineering 2021. The contents of this volume focus on specialty conferences in construction, environmental, hydrotechnical, materials, structures, transportation engineering, etc. This volume will prove a valuable resource for those in academia and industry.
PENGUIN SCIENCE For those who find difficulty in communicating with engineers, Professor Gordon is a godsend His The Science of Strong Materials made plain the secrets of materials science, and now with this volume he explains the importance and properties of different structures in a way, which will appeal to everyone. Engineers will of course understand why the Greeks took the wheels off their chariots at night, why we get lumbago, why birds have feathers and how much science is involved in dressmaking as well as the strength of bridges, boats and aeroplanes. Professor Gordon explains all these things, showing how the need to be strong and to support various loads has influenced the development of all sorts of creatures and devices - including man. Lively and informative, this book describes the structural element in nature, technology and everyday life from modern viewpoints.
This book presents a modern continuum mechanics and mathematical framework to study shell physical behaviors, and to formulate and evaluate finite element procedures. With a view towards the synergy that results from physical and mathematical understanding, the book focuses on the fundamentals of shell theories, their mathematical bases and finite element discretizations. The complexity of the physical behaviors of shells is analysed, and the difficulties to obtain uniformly optimal finite element procedures are identified and studied. Some modern finite element methods are presented for linear and nonlinear analyses. In this Second Edition the authors give new developments in the field and - to make the book more complete - more explanations throughout the text, an enlarged section on general variational formulations and new sections on 3D-shell models, dynamic analyses, and triangular elements. The analysis of shells represents one of the most challenging fields in all of mechanics, and encompasses various fundamental and generally applicable components. Specifically, the material presented in this book regarding geometric descriptions, tensors and mixed variational formulations is fundamental and widely applicable also in other areas of mechanics.
Historic structures need to be restored in line with international guidance and charters developed by architects and archaeologists, but technical understanding of structural engineering and materials is crucial, particularly with respect to response to earthquake loading. This guide to structural assessment and restoration of masonry monuments and historical buildings outlines the techniques, materials and design procedures used. It begins with principles, theory and practice and then presents case studies. The assessment focusses on Building materials and construction techniques used in the past The mechanics of masonry The structural behaviour of masonry monuments and historical buildings In-situ investigation and laboratory tests for existing and restoration materials. The restoration elaborates on Techniques and materials available for structural restoration Structural analysis and design Deciding on the restoration scheme Emergency measures and protective measures.
Matrix analysis of structures is a vital subject to every structural analyst, whether working in aero-astro, civil, or mechanical engineering. It provides a comprehensive approach to the analysis of a wide variety of structural types, and therefore offers a major advantage over traditional metho~ which often differ for each type of structure. The matrix approach also provides an efficient means of describing various steps in the analysis and is easily programmed for digital computers. Use of matrices is natural when performing calculations with a digital computer, because matrices permit large groups of numbers to be manipulated in a simple and effective manner. This book, now in its third edition, was written for both college students and engineers in industry. It serves as a textbook for courses at either the senior or first-year graduate level, and it also provides a permanent reference for practicing engineers. The book explains both the theory and the practical implementation of matrix methods of structural analysis. Emphasis is placed on developing a physical understanding of the theory and the ability to use computer programs for performing structural calculations.
This book describes the development of an innovative solution for electrified roadway pavements based on engineered cementitious composites, which are exhibiting an extreme tensile strain capacity that is much higher than conventional concrete. This enables the pavement to work without steel reinforcement and to embed a dynamic wireless power transfer technology for charging electric vehicles. At first, the book presents a modified performance-driven design approach to improve the composites to achieve the optimum pavement design in terms of functional and structural performance. It shows that the modified composites can be used to fulfil the safety and comfort factors without neglecting the characteristics of conventional ones. Further, 3D finite element and fluid dynamics models are used to analyse the pavement properties. The validated models can predict the functional performance, including skid resistance, surface water drainage, and noise. In the remaining part of the thesis, an environmentally-friendly photocatalytic function for pavement made of engineered cementitious composites is investigated. In turn, a multi-criteria design analysis is proposed to identify the optimum functional performance of the pavements. All in all, this book reports on a comprehensive approach to design, analyse and optimize engineered cementitious composites for electrified road pavement application. A special emphasis is given on applications in Singapore and other tropical megacities.
This short book analyses the dynamic stability with respect to small perturbations, as well as the local damage of geometrically nonlinear elastic, spatially curved, open section beams with axial precompression. Transient waves, which are the surfaces of strong discontinuity and wherein the stress and strain fields experience discontinuities, are used as small perturbations; in so doing the discontinuities are considered to be of small magnitude. Such waves are initiated during low-velocity impacts upon thin-walled beams. The theory of discontinuities and the method of ray expansions which allow one to find the desired fields behind the fronts of the transient waves in terms of discontinuities in time-derivatives of the values to be found, are used as the methods of solution for short-time dynamic processes. The example of using the ray expansions for analyzing the impact response of spatially curved thin-walled beams of open profile is demonstrated by solving the problem about the normal impact of an elastic hemispherical-nosed rod upon an elastic arch representing itself a channel-beam curved along an arc of the circumference. The influence of the initial stresses on the dynamic fields has been investigated.
Since the firm's founding twenty-five years ago, AKT II have forged an international practice that unifies the cultures and disciplines of architecture and structural engineering. This book is an engine for critical reflection on the scope, potential, and limits of what they have come to define as design engineering. Structured into five discursive domains-scale, variability, attitude, reverse engineering, and the craftsmanship of engineering-the book presents a robust selection of the firm's endeavours, which together demonstrate a vast range of encounters and processes in design. Common among them is a desire to understand and reshape the boundaries of the discipline of structural engineering, along with its links to fields such as philosophy, computer science, and geography. Interlaced with the projects, texts by contributors from varying fields engage the theoretical discussions and social conditions that bind contemporary practice. Matters of Engineering Design: AKT II balances structural concerns that require an equilibrium of internal and external forces, a clear understanding of boundary conditions, and knowledge of the properties of material with the overarching challenges that society faces today, including advances in technology, changing economic orders, and ecological responsibility. With contributions by William Baker, David Basulto, Hanif Kara, Jayne Kelley, Priya Khanchandani, Adrian Lahoud, Lesley Lokko, Ibrahim Mahama, Stephen Parnell, Vicky Richardson, and Ellis Woodman.
This book covers the essentials of developments in the area of plate structures and presents them so that the readers can obtain a quick understanding and overview of the subject. Several theoretical models are employed for their analysis and design starting from the classical thin plate theory to alternatives obtained by incorporation of appropriate complicating effects or by using fundamentally different assumptions. The book includes pedagogical features like end-of-chapter exercises and worked examples to help students in self-learning. The book is extremely useful for the senior undergraduate and postgraduate students of aerospace engineering and mechanical engineering.
The study of structural instability plays a role of primary importance in the field of applied mechanics. Despite the remarkable progresses made in the recent past years, the structural instability remains one of the most challenging topics in applied - chanics. Many problems have bee:: solved in the last decades but still many others remain to be solved satisfactorily. The increasing number of papers published in jo- nals and conferences organized by ECCS, SSRC, IUTAM, and EUROMECH strongly indicates the interest of scientists and engineers in the subject. A careful examination of these publications shows that they tend to fall into one of the two categories. The first is that of practical design direction in which methods for analyzing specific stability problems related to some specific structural typologies are developed. The research works are restricted to determining the critical load, considering that it is sufficient to know the limits of stability range. These studies are invaluable since their aim is to provide solutions to practical problems, to supply the designer with data useful for design and prepare norms, specifications and codes. The second direction is that of theoretical studies, aiming at a mathematical modeling of the instability problems, for a better understanding of the phenomena. In these studies, special emphasis is placed on the behavior of structures after the loss of stability in the post-critical range. This approach is less familiar to designers as its results have not yet become part of current structural design practice.
This classic and essential work has been thoroughly revised and updated in line with the requirements of new codes and standards which have been introduced in recent years, including the new Eurocode as well as up-to-date British Standards. It provides a general introduction along with details of analysis and design of a wide range of structures and examination of design according to British and then European Codes. Highly illustrated with numerous line diagrams, tables and worked examples, Reynolds's Reinforced Concrete Designer's Handbook is a unique resource providing comprehensive guidance that enables the engineer to analyze and design reinforced concrete buildings, bridges, retaining walls, and containment structures. Written for structural engineers, contractors, consulting engineers, local and health authorities, and utilities, this is also excellent for civil and architecture departments in universities and FE colleges.
Strong ground motion measuring and recording instruments play a major role in mitigation of seismic risk. The strong ground motion near the source of an earthquake describes the effects that endanger our built environment, and is also the most detailed clue concerning the source mechanism of the earthquake. The range of complexity that engulfs our understanding of the source parameters of a major earthquake (extent of the source mechanism, stress drop, wave propagation patterns) and how buildings and other works of construction respond to ground-transmitted dynamic effects may be overpowered by improved direct observations. Strong motion seismographs provide the information that enables scientists and engineers to resolve the many issues that are intertwined with practical problems of building safe communities worldwide. They may be installed as arrays close to major fault zones, consisting of many instruments arranged in some geometrical pattern, or in the vicinity and mounted on buildings. This book, which contains papers by invited authorities,
represents a unique interaction between seismologists and
earthquake engineers who examine issues of mutual concern in an
overlapping area of major interest. The papers have been grouped
around three major areas.
Deployable structures can vary their shape automatically from a compact, packaged configuration to an expanded, operational configuration. The first properly engineered deployable structures were used as stabilization booms on early spacecraft. Later on, more complex structures were devised for solar arrays, communication reflectors and telescopes. In other fields there have been a variety of developments, including retractable roofs for stadia, foldable components for cars, portable structures for temporary shelters and exhibition displays. Three main themes are discussed in this book: concepts, working principles, and mechanics of deployable structures, both in engineering and biology; in addition: theory of foldable bar structures and application to deployable tensegrities; formulation of large-rotation analysis of deployable structures and finite-element simulation methods.
A complete review of the fast-developing topic of high performance concrete (HPC) by one of the leading researchers in the field. It covers all aspects of HPC from materials, properties and technology, to construction and testing. The book will be valuable for all concrete technologists and construction engineers wishing to take advantage of the remarkable properties of the material. |
You may like...
Welding Deformation and Residual Stress…
Ninshu Ma, Dean Deng, …
Paperback
R3,925
Discovery Miles 39 250
Handbook of Recycled Concrete and…
Fernando Pacheco Torgal, Yining Ding
Hardcover
R5,082
Discovery Miles 50 820
|